These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 17431731)
1. Long chain fatty acid oxidation defects in children: importance of detection and treatment options. Hayes B; Lynch B; O'Keefe M; Monavari AA; Treacy EP Ir J Med Sci; 2007 Sep; 176(3):189-92. PubMed ID: 17431731 [TBL] [Abstract][Full Text] [Related]
2. Long-chain fatty acid oxidation during early human development. Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Tyni T; Paetau A; Strauss AW; Middleton B; Kivelä T Pediatr Res; 2004 Nov; 56(5):744-50. PubMed ID: 15347768 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of 3-hydroxy-fatty acids in the culture medium of long-chain L-3-hydroxyacyl CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein-deficient skin fibroblasts: implications for medium chain triglyceride dietary treatment of LCHAD deficiency. Jones PM; Butt Y; Bennett MJ Pediatr Res; 2003 May; 53(5):783-7. PubMed ID: 12621125 [TBL] [Abstract][Full Text] [Related]
5. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. Ibdah JA; Bennett MJ; Rinaldo P; Zhao Y; Gibson B; Sims HF; Strauss AW N Engl J Med; 1999 Jun; 340(22):1723-31. PubMed ID: 10352164 [TBL] [Abstract][Full Text] [Related]
6. Early neonatal diagnosis of long-chain 3-hydroxyacyl coenzyme a dehydrogenase and mitochondrial trifunctional protein deficiencies. Hintz SR; Matern D; Strauss A; Bennett MJ; Hoyme HE; Schelley S; Kobori J; Colby C; Lehman NL; Enns GM Mol Genet Metab; 2002 Feb; 75(2):120-7. PubMed ID: 11855930 [TBL] [Abstract][Full Text] [Related]
7. Biochemical, clinical and molecular findings in LCHAD and general mitochondrial trifunctional protein deficiency. Olpin SE; Clark S; Andresen BS; Bischoff C; Olsen RK; Gregersen N; Chakrapani A; Downing M; Manning NJ; Sharrard M; Bonham JR; Muntoni F; Turnbull DN; Pourfarzam M J Inherit Metab Dis; 2005; 28(4):533-44. PubMed ID: 15902556 [TBL] [Abstract][Full Text] [Related]
9. Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency and progressive retinopathy: one case report followed by ERGs, VEPs, EOG over a 17-year period. Rigaudière F; Delouvrier E; Le Gargasson JF; Milani P; Ogier de Baulny H; Schiff M Doc Ophthalmol; 2021 Jun; 142(3):371-380. PubMed ID: 33392894 [TBL] [Abstract][Full Text] [Related]
10. Complete deficiency of mitochondrial trifunctional protein due to a novel mutation within the beta-subunit of the mitochondrial trifunctional protein gene leads to failure of long-chain fatty acid beta-oxidation with fatal outcome. Schwab KO; Ensenauer R; Matern D; Uyanik G; Schnieders B; Wanders RA; Lehnert W Eur J Pediatr; 2003 Feb; 162(2):90-5. PubMed ID: 12548384 [TBL] [Abstract][Full Text] [Related]
11. Recognition and management of fatty acid oxidation defects: a series of 107 patients. Saudubray JM; Martin D; de Lonlay P; Touati G; Poggi-Travert F; Bonnet D; Jouvet P; Boutron M; Slama A; Vianey-Saban C; Bonnefont JP; Rabier D; Kamoun P; Brivet M J Inherit Metab Dis; 1999 Jun; 22(4):488-502. PubMed ID: 10407781 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial trifunctional protein deficiency: a rare cause of adult-onset rhabdomyolysis. Liewluck T; Mundi MS; Mauermann ML Muscle Nerve; 2013 Dec; 48(6):989-91. PubMed ID: 23868323 [TBL] [Abstract][Full Text] [Related]
13. Defects in mitochondrial fatty acid oxidation: clinical presentations and their role in sudden infant death. Pollitt RJ Padiatr Padol; 1993; 28(1):13-7. PubMed ID: 8446423 [TBL] [Abstract][Full Text] [Related]
14. Fatty acid mitochondrial beta-oxidation and hypoglycaemia in children. Taroni F; Uziel G Curr Opin Neurol; 1996 Dec; 9(6):477-85. PubMed ID: 9007409 [TBL] [Abstract][Full Text] [Related]
15. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. El-Gharbawy A; Vockley J Pediatr Clin North Am; 2018 Apr; 65(2):317-335. PubMed ID: 29502916 [TBL] [Abstract][Full Text] [Related]
16. Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects? Olsen RK; Cornelius N; Gregersen N Mol Genet Metab; 2013; 110 Suppl():S31-9. PubMed ID: 24206932 [TBL] [Abstract][Full Text] [Related]
17. Inborn defects of fatty acid oxidation: a preventable cause of SIDS. Keppen LD; Randall B S D J Med; 1999 Jun; 52(6):187-8; disscussion 188-9. PubMed ID: 10388343 [TBL] [Abstract][Full Text] [Related]