These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 17431903)
1. Differential effects of trisomy on brain shape and volume in related aneuploid mouse models. Aldridge K; Reeves RH; Olson LE; Richtsmeier JT Am J Med Genet A; 2007 May; 143A(10):1060-70. PubMed ID: 17431903 [TBL] [Abstract][Full Text] [Related]
2. Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice. Olson LE; Roper RJ; Sengstaken CL; Peterson EA; Aquino V; Galdzicki Z; Siarey R; Pletnikov M; Moran TH; Reeves RH Hum Mol Genet; 2007 Apr; 16(7):774-82. PubMed ID: 17339268 [TBL] [Abstract][Full Text] [Related]
3. Down syndrome mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Olson LE; Roper RJ; Baxter LL; Carlson EJ; Epstein CJ; Reeves RH Dev Dyn; 2004 Jul; 230(3):581-9. PubMed ID: 15188443 [TBL] [Abstract][Full Text] [Related]
4. Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Baxter LL; Moran TH; Richtsmeier JT; Troncoso J; Reeves RH Hum Mol Genet; 2000 Jan; 9(2):195-202. PubMed ID: 10607830 [TBL] [Abstract][Full Text] [Related]
5. The "Down syndrome critical region" is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. Belichenko NP; Belichenko PV; Kleschevnikov AM; Salehi A; Reeves RH; Mobley WC J Neurosci; 2009 May; 29(18):5938-48. PubMed ID: 19420260 [TBL] [Abstract][Full Text] [Related]
6. Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome. Lyle R; Gehrig C; Neergaard-Henrichsen C; Deutsch S; Antonarakis SE Genome Res; 2004 Jul; 14(7):1268-74. PubMed ID: 15231743 [TBL] [Abstract][Full Text] [Related]
7. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Stringer M; Abeysekera I; Thomas J; LaCombe J; Stancombe K; Stewart RJ; Dria KJ; Wallace JM; Goodlett CR; Roper RJ Physiol Behav; 2017 Aug; 177():230-241. PubMed ID: 28478033 [TBL] [Abstract][Full Text] [Related]
8. Sexually dimorphic DYRK1A overexpression on postnatal day 15 in the Ts65Dn mouse model of Down syndrome: Effects of pharmacological targeting on behavioral phenotypes. Hawley LE; Prochaska F; Stringer M; Goodlett CR; Roper RJ Pharmacol Biochem Behav; 2022 Jun; 217():173404. PubMed ID: 35576991 [TBL] [Abstract][Full Text] [Related]
9. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes. García-Cerro S; Rueda N; Vidal V; Lantigua S; Martínez-Cué C Neurobiol Dis; 2017 Oct; 106():76-88. PubMed ID: 28647555 [TBL] [Abstract][Full Text] [Related]
10. Mouse models of Down syndrome: gene content and consequences. Gupta M; Dhanasekaran AR; Gardiner KJ Mamm Genome; 2016 Dec; 27(11-12):538-555. PubMed ID: 27538963 [TBL] [Abstract][Full Text] [Related]
11. Developmental instability of the cerebellum and its relevance to Down syndrome. Shapiro BL J Neural Transm Suppl; 2001; (61):11-34. PubMed ID: 11771737 [TBL] [Abstract][Full Text] [Related]
12. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Olson LE; Richtsmeier JT; Leszl J; Reeves RH Science; 2004 Oct; 306(5696):687-90. PubMed ID: 15499018 [TBL] [Abstract][Full Text] [Related]
13. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Kirsammer G; Jilani S; Liu H; Davis E; Gurbuxani S; Le Beau MM; Crispino JD Blood; 2008 Jan; 111(2):767-75. PubMed ID: 17901249 [TBL] [Abstract][Full Text] [Related]
14. Trisomic and allelic differences influence phenotypic variability during development of Down syndrome mice. Deitz SL; Roper RJ Genetics; 2011 Dec; 189(4):1487-95. PubMed ID: 21926299 [TBL] [Abstract][Full Text] [Related]
15. Microstructure of trabecular bone in a mouse model for Down syndrome. Parsons T; Ryan TM; Reeves RH; Richtsmeier JT Anat Rec (Hoboken); 2007 Apr; 290(4):414-21. PubMed ID: 17514765 [TBL] [Abstract][Full Text] [Related]
16. The Impact of Mmu17 Non-Hsa21 Orthologous Genes in the Ts65Dn Mouse Model of Down Syndrome: The Gold Standard Refuted. Guedj F; Kane E; Bishop LA; Pennings JLA; Herault Y; Bianchi DW Biol Psychiatry; 2023 Jul; 94(1):84-97. PubMed ID: 37074246 [TBL] [Abstract][Full Text] [Related]
17. Increased male reproductive success in Ts65Dn "Down syndrome" mice. Moore CS; Hawkins C; Franca A; Lawler A; Devenney B; Das I; Reeves RH Mamm Genome; 2010 Dec; 21(11-12):543-9. PubMed ID: 21110029 [TBL] [Abstract][Full Text] [Related]
18. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice. Dutka T; Hallberg D; Reeves RH Mech Dev; 2015 Feb; 135():68-80. PubMed ID: 25511459 [TBL] [Abstract][Full Text] [Related]
19. Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Richtsmeier JT; Baxter LL; Reeves RH Dev Dyn; 2000 Feb; 217(2):137-45. PubMed ID: 10706138 [TBL] [Abstract][Full Text] [Related]
20. Penetrance of Congenital Heart Disease in a Mouse Model of Down Syndrome Depends on a Trisomic Potentiator of a Disomic Modifier. Li H; Edie S; Klinedinst D; Jeong JS; Blackshaw S; Maslen CL; Reeves RH Genetics; 2016 Jun; 203(2):763-70. PubMed ID: 27029737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]