BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17432877)

  • 1. Delipidation of a whey protein concentrate by electroacidification with bipolar membranes.
    Shee FL; Angers P; Bazinet L
    J Agric Food Chem; 2007 May; 55(10):3985-9. PubMed ID: 17432877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precipitation of cheddar cheese whey lipids by electrochemical acidification.
    Shee FL; Angers P; Bazinet L
    J Agric Food Chem; 2005 Jul; 53(14):5635-9. PubMed ID: 15998126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of conductivity control on the separation of whey proteins by bipolar membrane electroacidification.
    Bazinet L; Ippersiel D; Mahdavi B
    J Agric Food Chem; 2004 Apr; 52(7):1980-4. PubMed ID: 15053539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature on the separation of soybean 11 S and 7 S protein fractions during bipolar membrane electroacidification.
    Bazinet L; Ippersiel D; Labrecque R; Lamarche F
    Biotechnol Prog; 2000; 16(2):292-5. PubMed ID: 10753457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of added salt and increase in ionic strength on skim milk electroacidification performances.
    Bazinet L; Ippersiel D; Gendron C; Mahdavi B; Amiot J; Lamarche F
    J Dairy Res; 2001 May; 68(2):237-50. PubMed ID: 11504388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bipolar membrane electroacidification of demineralized skim milk.
    Bazinet L; Ippersiel D; Gendron C; René-Paradis J; Tétrault C; Beaudry J; Britten M; Mahdavi B; Amiot J; Lamarche F
    J Agric Food Chem; 2001 Jun; 49(6):2812-8. PubMed ID: 11409970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cationic membrane permselectivity on the efficiency of skim milk electroacidification.
    Bazinet L; Lamarche F; Ippersiel D; Mahdavi B; Amiot J
    J Agric Food Chem; 2000 Jun; 48(6):2595-601. PubMed ID: 10888590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubilization of chitosan by bipolar membrane electroacidification.
    Lin Teng Shee F; Arul J; Brunet S; Mateescu AM; Bazinet L
    J Agric Food Chem; 2006 Sep; 54(18):6760-4. PubMed ID: 16939337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic approach for the identification of cationic membrane fouling during cheddar cheese whey electroacidification.
    Lin Teng Shee F; Angers P; Bazinet L
    J Colloid Interface Sci; 2008 Jun; 322(2):551-7. PubMed ID: 18423479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High hydrostatic pressure modification of whey protein concentrate for improved functional properties.
    Lim SY; Swanson BG; Clark S
    J Dairy Sci; 2008 Apr; 91(4):1299-307. PubMed ID: 18349222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of soy protein concentrates using a combination of electroacidification and ultrafiltration.
    Mondor M; Ippersiel D; Lamarche F; Boye JI
    J Agric Food Chem; 2004 Nov; 52(23):6991-6. PubMed ID: 15537308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of a high gel strength whey protein concentrate from cheese whey.
    Veith PD; Reynolds EC
    J Dairy Sci; 2004 Apr; 87(4):831-40. PubMed ID: 15259217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Straightforward process for removal of milk fat globule membranes and production of fat-free whey protein concentrate from cheese whey.
    Damodaran S
    J Agric Food Chem; 2011 Sep; 59(18):10271-6. PubMed ID: 21830791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of type of added salt and ionic strength on physicochemical and functional properties of casein isolates produced by electroacidification.
    Bazinet L; Gendron C; Ippersiel D; René-Paradis J; Tétreault C; Beaudry J; Britten M; Mahdavi B; Amiot J; Lamarche F
    J Agric Food Chem; 2002 Nov; 50(23):6875-81. PubMed ID: 12405791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates.
    Luck PJ; Vardhanabhuti B; Yong YH; Laundon T; Barbano DM; Foegeding EA
    J Dairy Sci; 2013 Sep; 96(9):5522-31. PubMed ID: 23871371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High hydrostatic pressure modification of whey protein concentrate for improved body and texture of lowfat ice cream.
    Lim SY; Swanson BG; Ross CF; Clark S
    J Dairy Sci; 2008 Apr; 91(4):1308-16. PubMed ID: 18349223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated moving bed technology with a simplified approach for protein purification. Separation of lactoperoxidase and lactoferrin from whey protein concentrate.
    Andersson J; Mattiasson B
    J Chromatogr A; 2006 Feb; 1107(1-2):88-95. PubMed ID: 16387313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation and expanded utility of a modified whey protein ingredient via carbohydrate conjugation at low pH.
    Lillard JS; Clare DA; Daubert CR
    J Dairy Sci; 2009 Jan; 92(1):35-48. PubMed ID: 19109261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of commercially available, wide-pore ultrafiltration membranes for production of α-lactalbumin-enriched whey protein concentrate.
    Marella C; Muthukumarappan K; Metzger LE
    J Dairy Sci; 2011 Mar; 94(3):1165-75. PubMed ID: 21338782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature identification and morphology characterization of anion-exchange membrane fouling during conventional electrodialysis.
    Ayala-Bribiesca E; Pourcelly G; Bazinet L
    J Colloid Interface Sci; 2007 Apr; 308(1):182-90. PubMed ID: 17240393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.