These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 17433292)
41. A single residue, Lys108, of the delta-opioid receptor prevents the mu-opioid-selective ligand [D-Ala2,N-MePhe4,Gly-ol5]enkephalin from binding to the delta-opioid receptor. Minami M; Nakagawa T; Seki T; Onogi T; Aoki Y; Katao Y; Katsumata S; Satoh M Mol Pharmacol; 1996 Nov; 50(5):1413-22. PubMed ID: 8913373 [TBL] [Abstract][Full Text] [Related]
42. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells. Prather PL; Song L; Piros ET; Law PY; Hales TG J Pharmacol Exp Ther; 2000 Nov; 295(2):552-62. PubMed ID: 11046088 [TBL] [Abstract][Full Text] [Related]
43. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits. Berecki G; Motin L; Adams DJ Mol Pharmacol; 2016 Jan; 89(1):187-96. PubMed ID: 26490245 [TBL] [Abstract][Full Text] [Related]
44. Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- and μ-opioid receptors in mouse medial prefrontal cortex. Olianas MC; Dedoni S; Onali P Neurochem Int; 2012 Dec; 61(8):1404-16. PubMed ID: 23073238 [TBL] [Abstract][Full Text] [Related]
45. Differential regulation of mu and delta opiate receptors by morphine, selective agonists and antagonists and differentiating agents in SH-SY5Y human neuroblastoma cells. Zadina JE; Harrison LM; Ge LJ; Kastin AJ; Chang SL J Pharmacol Exp Ther; 1994 Sep; 270(3):1086-96. PubMed ID: 7932156 [TBL] [Abstract][Full Text] [Related]
46. Differences among mouse strains in the regulation by mu, delta 1 and delta 2 opioid receptors of striatal adenylyl cyclases activated by dopamine D1 or adenosine A2a receptors. Noble F; Cox BM Brain Res; 1996 Apr; 716(1-2):107-17. PubMed ID: 8738226 [TBL] [Abstract][Full Text] [Related]
47. Effects of regulators of G protein-signaling proteins on the functional response of the mu-opioid receptor in a melanophore-based assay. Potenza MN; Gold SJ; Roby-Shemkowitz A; Lerner MR; Nestler EJ J Pharmacol Exp Ther; 1999 Nov; 291(2):482-91. PubMed ID: 10525062 [TBL] [Abstract][Full Text] [Related]
48. Effects of chronic morphine exposure on opioid inhibition of adenylyl cyclase in 7315c cell membranes: a useful model for the study of tolerance at mu opioid receptors. Puttfarcken PS; Werling LL; Cox BM Mol Pharmacol; 1988 May; 33(5):520-7. PubMed ID: 2835651 [TBL] [Abstract][Full Text] [Related]
49. Differential effects of regulator of G protein signaling (RGS) proteins on serotonin 5-HT1A, 5-HT2A, and dopamine D2 receptor-mediated signaling and adenylyl cyclase activity. Ghavami A; Hunt RA; Olsen MA; Zhang J; Smith DL; Kalgaonkar S; Rahman Z; Young KH Cell Signal; 2004 Jun; 16(6):711-21. PubMed ID: 15093612 [TBL] [Abstract][Full Text] [Related]
50. Sympathoadrenal, cardiovascular and blood gas responses to highly selective mu and delta opioid peptides. Kiritsy-Roy JA; Marson L; Van Loon GR J Pharmacol Exp Ther; 1989 Dec; 251(3):1096-103. PubMed ID: 2557411 [TBL] [Abstract][Full Text] [Related]
51. D(2)-Dopamine receptors target regulator of G protein signaling 9-2 to detergent-resistant membrane fractions. Celver J; Sharma M; Kovoor A J Neurochem; 2012 Jan; 120(1):56-69. PubMed ID: 22035199 [TBL] [Abstract][Full Text] [Related]
52. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Traynor J Drug Alcohol Depend; 2012 Mar; 121(3):173-80. PubMed ID: 22129844 [TBL] [Abstract][Full Text] [Related]
53. RGS9-2 is a negative modulator of mu-opioid receptor function. Psifogeorgou K; Papakosta P; Russo SJ; Neve RL; Kardassis D; Gold SJ; Zachariou V J Neurochem; 2007 Oct; 103(2):617-25. PubMed ID: 17725581 [TBL] [Abstract][Full Text] [Related]
54. The complex of G protein regulator RGS9-2 and Gβ(5) controls sensitization and signaling kinetics of type 5 adenylyl cyclase in the striatum. Xie K; Masuho I; Brand C; Dessauer CW; Martemyanov KA Sci Signal; 2012 Aug; 5(239):ra63. PubMed ID: 22932702 [TBL] [Abstract][Full Text] [Related]
55. The role of regulator of G protein signaling 4 in delta-opioid receptor-mediated behaviors. Dripps IJ; Wang Q; Neubig RR; Rice KC; Traynor JR; Jutkiewicz EM Psychopharmacology (Berl); 2017 Jan; 234(1):29-39. PubMed ID: 27624599 [TBL] [Abstract][Full Text] [Related]
56. Role of extracellular signal-regulated kinases in opioid-induced adenylyl cyclase superactivation in human embryonic kidney 293 cells. Tso PH; Wong YH Neurosci Lett; 2001 Dec; 316(1):13-6. PubMed ID: 11720767 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of lacrimal function by selective opiate agonists. Cripps MM; Bennett DJ Adv Exp Med Biol; 1994; 350():127-32. PubMed ID: 8030464 [No Abstract] [Full Text] [Related]
58. Evaluating Opioid-Mediated Adenylyl Cyclase Inhibition in Live Cells Using a BRET-Based Assay. Manandhar P; Sachdev S; Santiago M Methods Mol Biol; 2021; 2201():117-125. PubMed ID: 32975794 [TBL] [Abstract][Full Text] [Related]
59. Identification of RGS2 and type V adenylyl cyclase interaction sites. Salim S; Sinnarajah S; Kehrl JH; Dessauer CW J Biol Chem; 2003 May; 278(18):15842-9. PubMed ID: 12604604 [TBL] [Abstract][Full Text] [Related]
60. RGS9-2: probing an intracellular modulator of behavior as a drug target. Traynor JR; Terzi D; Caldarone BJ; Zachariou V Trends Pharmacol Sci; 2009 Mar; 30(3):105-11. PubMed ID: 19211160 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]