BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 17433404)

  • 1. Uncertainty in prediction of disinfection performance.
    Neumann MB; von Gunten U; Gujer W
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Ct equation taking into consideration the effect of lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone.
    Sivaganesan M; Mariñas BJ
    Water Res; 2005 Jun; 39(11):2429-37. PubMed ID: 15963550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH; Elovitz MS; von Gunten U; Shukairy HM; Mariñas BJ
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-biological surrogate for sequential disinfection processes.
    Baeza C; Ducoste J
    Water Res; 2004; 38(14-15):3400-10. PubMed ID: 15276757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil.
    Pereira JT; Costa AO; de Oliveira Silva MB; Schuchard W; Osaki SC; de Castro EA; Paulino RC; Soccol VT
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):464-73. PubMed ID: 18498060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic model of an ozonation reactor.
    Gujer W; von Gunten U
    Water Res; 2003 Apr; 37(7):1667-77. PubMed ID: 12600396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Cryptosporidium parvum oocysts with sequential application of ozone and combined chlorine.
    Rennecker JL; Corona-Vasquez B; Driedger AM; Rubin SA; Mariñas BJ
    Water Sci Technol; 2001; 43(12):167-70. PubMed ID: 11464747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian method of estimating kinetic parameters for the inactivation of Cryptosporidium parvum oocysts with chlorine dioxide and ozone.
    Sivaganesan M; Rice EW; Mariñas BJ
    Water Res; 2003 Nov; 37(18):4533-43. PubMed ID: 14511724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Including operational data in QMRA model: development and impact of model inputs.
    Jaidi K; Barbeau B; Carrière A; Desjardins R; Prévost M
    J Water Health; 2009 Mar; 7(1):77-95. PubMed ID: 18957777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation and application of Cryptosporidium parvum inactivation with ozone treatment.
    Cho M; Yoon J
    Water Sci Technol; 2007; 55(1-2):241-50. PubMed ID: 17305146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficiency of ozonated water from a water treatment plant to inactivate Cryptosporidium oocysts during two seasonal temperatures.
    Wohlsen T; Stewart S; Aldridge P; Bates J; Gray B; Katouli M
    J Water Health; 2007 Sep; 5(3):433-40. PubMed ID: 17878558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic inactivation of Cryptosporidium parvum using ozone followed by free chlorine in natural water.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2003 Nov; 37(19):4737-47. PubMed ID: 14568061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of drinking water treatment for virus risk assessment.
    Teunis PF; Rutjes SA; Westrell T; de Roda Husman AM
    Water Res; 2009 Feb; 43(2):395-404. PubMed ID: 19036398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The efficacy of water ozonation on the inactivation of oocysts of Cryptosporidium].
    Perrine D; Georges P; Langlais B
    Bull Acad Natl Med; 1990; 174(6):845-50; discussion 850-1. PubMed ID: 2271989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: influence of pre-treatment and consequences for positioning of the ozonation step.
    Choi Y; Cho M; Lee Y; Choi J; Yoon J
    Chemosphere; 2007 Oct; 69(5):675-81. PubMed ID: 17604815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global sensitivity analysis for model-based prediction of oxidative micropollutant transformation during drinking water treatment.
    Neumann MB; Gujer W; von Gunten U
    Water Res; 2009 Mar; 43(4):997-1004. PubMed ID: 19110290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone.
    Craik SA; Smith DW; Chandrakanth M; Belosevic M
    Water Res; 2003 Sep; 37(15):3622-31. PubMed ID: 12867328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using ultraviolet light for disinfection of finished water.
    Bukhari Z; Abrams F; LeChevallier M
    Water Sci Technol; 2004; 50(1):173-8. PubMed ID: 15318505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2005 Sep; 39(14):3167-76. PubMed ID: 16000207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.
    King BJ; Hoefel D; Daminato DP; Fanok S; Monis PT
    J Appl Microbiol; 2008 May; 104(5):1311-23. PubMed ID: 18248370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.