BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 17433404)

  • 21. Drinking water treatment processes for removal of Cryptosporidium and Giardia.
    Betancourt WQ; Rose JB
    Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with chlorine dioxide.
    Clark RM; Sivaganesan M; Rice EW; Chen J
    Water Res; 2003 Jun; 37(11):2773-83. PubMed ID: 12753856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of temperature on the efficacy of ozonation for inactivating Cryptosporidium parvum oocysts.
    Hirata T; Shimura A; Morita S; Suzuki M; Motoyama N; Hoshikawa H; Moniwa T; Kaneko M
    Water Sci Technol; 2001; 43(12):163-6. PubMed ID: 11464746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2.
    Méndez-Hermida F; Ares-Mazás E; McGuigan KG; Boyle M; Sichel C; Fernández-Ibáñez P
    J Photochem Photobiol B; 2007 Sep; 88(2-3):105-11. PubMed ID: 17624798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling Cryptosporidium parvum oocyst inactivation and bromate formation in a full-scale ozone contactor.
    Tang G; Adu-Sarkodie K; Kim D; Kim JH; Teefy S; Shukairy HM; Mariñas BJ
    Environ Sci Technol; 2005 Dec; 39(23):9343-50. PubMed ID: 16382962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic spore-forming bacteria for assessing quality of drinking water produced from surface water.
    Mazoua S; Chauveheid E
    Water Res; 2005 Dec; 39(20):5186-98. PubMed ID: 16280148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Indigenous bacterial spores as indicators of Cryptosporidium inactivation using chlorine dioxide.
    Verhille S; Hofmann R; Chauret C; Andrews R
    J Water Health; 2003 Jun; 1(2):91-100. PubMed ID: 15382738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water.
    McGuigan KG; Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; Boyle M; Sichel C; Fernández-Ibáñez P; Meyer BP; Ramalingham S; Meyer EA
    J Appl Microbiol; 2006 Aug; 101(2):453-63. PubMed ID: 16882154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of risk of infection due to Cryptosporidium parvum in drinking water.
    Masago Y; Katayama H; Hashimoto A; Hirata T; Ohgaki S
    Water Sci Technol; 2002; 46(11-12):319-24. PubMed ID: 12523772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ozone and ultraviolet radiation treatments on the infectivity of Toxoplasma gondii oocysts.
    Dumètre A; Le Bras C; Baffet M; Meneceur P; Dubey JP; Derouin F; Duguet JP; Joyeux M; Moulin L
    Vet Parasitol; 2008 May; 153(3-4):209-13. PubMed ID: 18355965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing UV reactor performance for treatment of finished water.
    Bukhari Z; LeChevallier M
    Water Sci Technol; 2003; 47(3):179-84. PubMed ID: 12639026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of Escherichia coli by ozone under bench-scale plug flow and full-scale hydraulic conditions.
    Smeets PW; van der Helm AW; Dullemont YJ; Rietveld LC; van Dijk JC; Medema GJ
    Water Res; 2006 Oct; 40(17):3239-48. PubMed ID: 16938335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions.
    Shahiduzzaman M; Dyachenko V; Keidel J; Schmäschke R; Daugschies A
    Vet Parasitol; 2010 Jan; 167(1):43-9. PubMed ID: 19850414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of Cryptosporidium parvum under chlorinated recreational water conditions.
    Shields JM; Hill VR; Arrowood MJ; Beach MJ
    J Water Health; 2008 Dec; 6(4):513-20. PubMed ID: 18401116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation of Cryptosporidium parvum oocysts with ozone and monochloramine at low temperature.
    Driedger AM; Rennecker JL; Mariñas BJ
    Water Res; 2001 Jan; 35(1):41-8. PubMed ID: 11257892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of OH radical CT for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems.
    Cho M; Yoon J
    J Appl Microbiol; 2008 Mar; 104(3):759-66. PubMed ID: 18266706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with ozone.
    Clark RM; Sivagenesan M; Rice EW; Chen J
    Water Res; 2002 Jul; 36(12):3141-9. PubMed ID: 12171413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of disinfectant concentration and pH in the inactivation kinetics of Cryptosporidium parvum oocysts with ozone and monochloramine.
    Rennecker JL; Kim JH; Corona-Vasquez B; Mariñas BJ
    Environ Sci Technol; 2001 Jul; 35(13):2752-7. PubMed ID: 11452604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative risk assessment of Cryptosporidium in surface water treatment.
    Medema GJ; Hoogenboezem W; van der Veer AJ; Ketelaars HA; Hijnen WA; Nobel PJ
    Water Sci Technol; 2003; 47(3):241-7. PubMed ID: 12639036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.