BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 17434179)

  • 1. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic Au(core)-Ag(shell) nanoparticles from interfacial redox process using poly(o-methoxyaniline).
    Mukherjee P; Nandi AK
    J Colloid Interface Sci; 2010 Apr; 344(1):30-6. PubMed ID: 20067848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light-scattering techniques.
    Chen L; Zhao W; Jiao Y; He X; Wang J; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):484-90. PubMed ID: 17329151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH.
    Huang YF; Huang KM; Chang HT
    J Colloid Interface Sci; 2006 Sep; 301(1):145-54. PubMed ID: 16777126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.
    Shankar SS; Rai A; Ahmad A; Sastry M
    J Colloid Interface Sci; 2004 Jul; 275(2):496-502. PubMed ID: 15178278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions.
    Huang CC; Yang Z; Chang HT
    Langmuir; 2004 Jul; 20(15):6089-92. PubMed ID: 15248687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phase-transfer identification of core-shell structures in Ag-Pt nanoparticles.
    Yang J; Lee JY; Chen LX; Too HP
    J Phys Chem B; 2005 Mar; 109(12):5468-72. PubMed ID: 16851583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium.
    Yang J; Lee JY; Too HP
    J Phys Chem B; 2005 Oct; 109(41):19208-12. PubMed ID: 16853479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale.
    Sheny DS; Mathew J; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):254-62. PubMed ID: 21458366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.
    Shang L; Jin L; Guo S; Zhai J; Dong S
    Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles.
    Mandal S; Selvakannan PR; Pasricha R; Sastry M
    J Am Chem Soc; 2003 Jul; 125(28):8440-1. PubMed ID: 12848542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules.
    Güzel R; Ustündağ Z; Ekşi H; Keskin S; Taner B; Durgun ZG; Turan AA; Solak AO
    J Colloid Interface Sci; 2010 Nov; 351(1):35-42. PubMed ID: 20701922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The shape evolution of gold seeds and gold@silver core-shell nanostructures.
    Wu Y; Jiang P; Jiang M; Wang TW; Guo CF; Xie SS; Wang ZL
    Nanotechnology; 2009 Jul; 20(30):305602. PubMed ID: 19584416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface.
    Selvakannan PR; Swami A; Srisathiyanarayanan D; Shirude PS; Pasricha R; Mandale AB; Sastry M
    Langmuir; 2004 Aug; 20(18):7825-36. PubMed ID: 15323537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of controllable core-shell gold nanoparticles and its application in detection of silver ions.
    Huang H; Qu C; Liu X; Huang S; Xu Z; Liao B; Zeng Y; Chu PK
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):183-90. PubMed ID: 21250641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Flame atomic absorption spectrometric determination of H2O2 using (Au) core (Ag) shell nanoparticles].
    Jiang ZL; Tang YF; Liang AH; Gong Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1990-2. PubMed ID: 19798989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-mediated synthesis and encapsulation of inorganic nanoparticles in shell-cross-linked cylindrical polyferrocenylsilane block copolymer micelles.
    Wang H; Wang X; Winnik MA; Manners I
    J Am Chem Soc; 2008 Oct; 130(39):12921-30. PubMed ID: 18763779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core.
    Zeng J; Yang J; Lee JY; Zhou W
    J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.