BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17434259)

  • 21. Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content.
    Oleszczuk P
    Chemosphere; 2007 Mar; 67(3):582-91. PubMed ID: 17109917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.
    Zhang Y; McPhedran KN; Gamal El-Din M
    Sci Total Environ; 2015 Jul; 521-522():59-67. PubMed ID: 25828413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility.
    Roldán-Carrillo T; Castorena-Cortés G; Zapata-Peñasco I; Reyes-Avila J; Olguín-Lora P
    J Environ Manage; 2012 Mar; 95 Suppl():S93-8. PubMed ID: 21600691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of petroleum pollutants and monitoring of bacterial community structure in a membrane bioreactor.
    Wiszniowski J; Ziembińska A; Ciesielski S
    Chemosphere; 2011 Mar; 83(1):49-56. PubMed ID: 21262521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments.
    Zheng XJ; Blais JF; Mercier G; Bergeron M; Drogui P
    Chemosphere; 2007 Jun; 68(6):1143-52. PubMed ID: 17337031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the effect of inoculation of activated sludge with bacteria actively degrading hydrocarbons on the biodegradation of petroleum products.
    Bieszkiewicz E; Boszczyk-Maleszak H; Włodarczyk A; Horoch M
    Acta Microbiol Pol; 2002; 51(3):285-92. PubMed ID: 12588103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor.
    Vandermeer KD; Daugulis AJ
    Biodegradation; 2007 Apr; 18(2):211-21. PubMed ID: 16758271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slurry-phase biodegradation of weathered oily sludge waste.
    Machín-Ramírez C; Okoh AI; Morales D; Mayolo-Deloisa K; Quintero R; Trejo-Hernández MR
    Chemosphere; 2008 Jan; 70(4):737-44. PubMed ID: 17659320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs).
    Fatone F; Di Fabio S; Bolzonella D; Cecchi F
    Water Res; 2011 Jan; 45(1):93-104. PubMed ID: 20804998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring of biopile composting of oily sludge.
    Kriipsalu M; Nammari D
    Waste Manag Res; 2010 May; 28(5):395-403. PubMed ID: 19748955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on biomethonization of waste water from jam industries.
    Mohan S; Sunny N
    Bioresour Technol; 2008 Jan; 99(1):210-3. PubMed ID: 17275291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge.
    Trably E; Patureau D; Delgenes JP
    Water Sci Technol; 2003; 48(4):53-60. PubMed ID: 14531422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.
    Li X; Chen H; Hu L; Yu L; Chen Y; Gu G
    Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenolic refinery wastewater biodegradation by an expanded granular sludge bed reactor.
    Almendariz FJ; Meraz M; Olmos AD; Monroy O
    Water Sci Technol; 2005; 52(1-2):391-6. PubMed ID: 16180455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling of an oil refinery wastewater treatment plant.
    Pinzón Pardo AL; Brdjanovic D; Moussa MS; López-Vázquez CM; Meijer SC; Van Straten HH; Janssen AJ; Amy G; Van Loosdrecht MC
    Environ Technol; 2007 Nov; 28(11):1273-84. PubMed ID: 18290537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the degradation of low concentration pollutants in membrane bioreactors.
    Peev M; Schönerklee M; De Wever H
    Water Sci Technol; 2004; 50(5):209-18. PubMed ID: 15497850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Treatment of oilfield produced water by biological methods-constructed wetland process and degradation characteristics of organic substances].
    Huang XF; Shen J; Wen Y; Liu J; Lu LJ; Zhou Q
    Huan Jing Ke Xue; 2010 Feb; 31(2):338-44. PubMed ID: 20391699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge.
    Amir S; Hafidi M; Merlina G; Hamdi H; Revel JC
    Chemosphere; 2005 Jan; 58(4):449-58. PubMed ID: 15620736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of peanut oil on microbial degradation of polycyclic aromatic hydrocarbons.
    Pannu JK; Singh A; Ward OP
    Can J Microbiol; 2003 Aug; 49(8):508-13. PubMed ID: 14608386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The removal of Polycyclic Aromatic Hydrocarbons in the wastewater treatment process: experimental calculations and model predictions.
    Manoli E; Samara C
    Environ Pollut; 2008 Feb; 151(3):477-85. PubMed ID: 17548140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.