BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17434259)

  • 61. Treatment of high-strength synthetic sewage in a laboratory-scale upflow anaerobic sludge bed (UASB) with aerobic activated sludge (AS) post-treatment.
    Banihani QH; Field JA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(3):338-47. PubMed ID: 23245309
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genotoxic activity of nitroarene-contaminated industrial sludge following large-scale treatment in aerated and non-aerated sacs.
    Gustavsson L; Engwall M
    Sci Total Environ; 2006 Aug; 367(2-3):694-703. PubMed ID: 16839596
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Characteristics of nitrogen removal in aerobic granular sludge membrane bioreactor].
    Wang JF; Wang X; Ji M; Lu S; Yang ZY; Li JW
    Huan Jing Ke Xue; 2007 Mar; 28(3):528-33. PubMed ID: 17633628
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Application of PCR-DGGE to analyse the yeast population dynamics in slurry reactors during degradation of polycyclic aromatic hydrocarbons in weathered oil.
    El-Latif Hesham A; Khan S; Liu X; Zhang Y; Wang Z; Yang M
    Yeast; 2006 Sep; 23(12):879-87. PubMed ID: 17001616
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil.
    Lundstedt S; Haglund P; Oberg L
    Environ Toxicol Chem; 2003 Jul; 22(7):1413-20. PubMed ID: 12836964
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Combined biological and physico-chemical treatment of baker's yeast wastewater including removal of coloured and recalcitrant to biodegradation pollutants.
    Gladchenko M; Starostina E; Shcherbakov S; Versprille B; Kalyuzhnyi S
    Water Sci Technol; 2004; 50(5):67-72. PubMed ID: 15497831
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents.
    Vidal G; Diez MC
    J Environ Manage; 2005 Mar; 74(4):317-25. PubMed ID: 15737456
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer.
    Kim YM; Park D; Lee DS; Park JM
    J Hazard Mater; 2007 Mar; 141(1):27-32. PubMed ID: 16876932
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A highly efficient method with low energy and water consumption in biodegradation of total petroleum hydrocarbons of oily sludge.
    Hamidi Y; Ataei SA; Sarrafi A
    J Environ Manage; 2021 Sep; 293():112911. PubMed ID: 34087648
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A three-compartment model for micropollutants sorption in sludge: methodological approach and insights.
    Barret M; Patureau D; Latrille E; Carrère H
    Water Res; 2010 Jan; 44(2):616-24. PubMed ID: 19758677
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization and assessment of Al Ruwais refinery wastewater.
    Al Zarooni M; Elshorbagy W
    J Hazard Mater; 2006 Aug; 136(3):398-405. PubMed ID: 16859828
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste.
    Venkatesan SK; Uddin M; Rajasekaran M; Ramani Kandasamy ; Ganesan S
    Environ Pollut; 2022 Nov; 313():120164. PubMed ID: 36113645
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodegradation of petroleum refining industry oil sludge by microbial-assisted biocarrier matrix: process optimization using response surface methodology.
    Swathi KV; Muneeswari R; Ramani K; Sekaran G
    Biodegradation; 2020 Dec; 31(4-6):385-405. PubMed ID: 33052472
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia.
    Jasmine J; Mukherji S
    J Environ Manage; 2015 Feb; 149():118-25. PubMed ID: 25463577
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting.
    Asgari A; Nabizadeh R; Mahvi AH; Nasseri S; Dehghani MH; Nazmara S; Yaghmaeian K
    J Environ Health Sci Eng; 2017; 15():3. PubMed ID: 28261488
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Applicability of Coriolopsis rigida for biodegradation of polycyclic aromatic hydrocarbons.
    Gómez J; Rodríguez Solar D; Pazos M; Sanromán MA
    Biotechnol Lett; 2006 Jul; 28(13):1013-7. PubMed ID: 16786260
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A comprehensive evaluation of re-circulated bio-filter as a pretreatment process for petroleum refinery wastewater.
    Dai X; Chen C; Yan G; Chen Y; Guo S
    J Environ Sci (China); 2016 Dec; 50():49-55. PubMed ID: 28034430
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biodegradation of polycyclic aromatic hydrocarbons in sludge.
    Yuan SY; Chang SW; Chang BV
    Bull Environ Contam Toxicol; 2003 Sep; 71(3):625-32. PubMed ID: 14567591
    [No Abstract]   [Full Text] [Related]  

  • 79. Membrane technology for treating decanted oily wastewater from marine oil spill operations: Comparison between membrane filtration and membrane bioreactor.
    Bhattacharyya A; Liu L; Walsh M; Lee K
    Mar Pollut Bull; 2023 Sep; 194(Pt B):115397. PubMed ID: 37573669
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of a Fenton process for the pretreatment of an iron-containing oily sludge: A sustainable management for refinery wastes.
    Jerez S; Ventura M; Molina R; Martínez F; Pariente MI; Melero JA
    J Environ Manage; 2022 Feb; 304():114244. PubMed ID: 34891053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.