These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17434259)

  • 81. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.
    Kwon TS; Lee JY
    Waste Manag Res; 2015 Oct; 33(10):937-40. PubMed ID: 26261236
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Recycling of petroleum-contaminated sand.
    Taha R; Ba-Omar M; Pillay AE; Roos G; al-Hamdi A
    J Environ Monit; 2001 Aug; 3(4):417-20. PubMed ID: 11523443
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Simultaneous biotreatment of Polycyclic Aromatic Hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain.
    Álvarez MS; Rodríguez A; Sanromán MÁ; Deive FJ
    Bioresour Technol; 2015 Dec; 198():181-8. PubMed ID: 26386421
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Treatment of organic water contaminants in oil refinery effluents investigated by using a simulation model.
    Siljeholm J
    Toxicol Ind Health; 1996; 12(5):697-721. PubMed ID: 8989848
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Degradation of organic contaminants found in organic waste.
    Angelidaki I; Mogensen AS; Ahring BK
    Biodegradation; 2000; 11(6):377-83. PubMed ID: 11587441
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The progressive steps for TPH stripping and the decomposition of oil refinery sludge using microbubble ozonation.
    Sun Z; Chen X; Yang K; Zhu N; Lou Z
    Sci Total Environ; 2020 Apr; 712():135631. PubMed ID: 32050395
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Impact of bioremediation strategies on slurry phase treatment of aged oily sludge from a refinery.
    Jasmine J; Mukherji S
    J Environ Manage; 2019 Sep; 246():625-635. PubMed ID: 31207501
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Characterization and biodegradability assessment of water-soluble fraction of oily sludge using stir bar sorptive extraction and GCxGC-TOF MS.
    Chand P; Dutta S; Mukherji S
    Environ Pollut; 2022 Jul; 304():119177. PubMed ID: 35346777
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Effect of ultrasonic reactor and auxiliary stirring on oil removal from oily sludge.
    Zhao X; Zhang X; Liu L; Fan L; Ge D
    Environ Technol; 2017 Dec; 38(24):3109-3114. PubMed ID: 28143358
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran.
    Farzadkia M; Dehghani M; Moafian M
    J Environ Health Sci Eng; 2014 Jan; 12(1):31. PubMed ID: 24422994
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Employing salt-tolerant bacteria Serratia marcescens subsp. SLS for biodegradation of oily kitchen waste.
    Zhang X; Zhang D; Chu S; Khalid M; Wang R; Chi Y; Duan X; Yang X; Zhou P
    Chemosphere; 2023 Jul; 329():138655. PubMed ID: 37059197
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A hazard ranking of organic contaminants in refinery effluents.
    Siljeholm J
    Toxicol Ind Health; 1997; 13(4):527-51. PubMed ID: 9249933
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhanced oil removal from oily sand by injecting micro-macrobubbles in swirl elution.
    Wang N; Lu H; Xu X; Liu Y; Li Y; Yuan F; Yang Q
    J Environ Manage; 2022 Aug; 316():115175. PubMed ID: 35658268
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Removal of hydrocarbons from wastewater using treated bark.
    Haussard M; Gaballah I; de Donato P; Barrès O; Mourey A
    J Air Waste Manag Assoc; 2001 Sep; 51(9):1351-8. PubMed ID: 11575889
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Use of neural network models to predict industrial bioreactor effluent quality.
    Pigram GM; MacDonald TR
    Environ Sci Technol; 2001 Jan; 35(1):157-62. PubMed ID: 11352004
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.
    Akizuki M; Fujii T; Hayashi R; Oshima Y
    J Biosci Bioeng; 2014 Jan; 117(1):10-8. PubMed ID: 23867097
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fate of hydrocarbons during oily sludge disposal in soil.
    Bossert I; Kachel WM; Bartha R
    Appl Environ Microbiol; 1984 Apr; 47(4):763-7. PubMed ID: 16346514
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Design of Bio-Absorbent Systems for the Removal of Hydrocarbons from Industrial Wastewater: Pilot-Plant Scale.
    Silva-Castro GA; Rodríguez-Calvo A; Robledo-Mahón T; Aranda E; González-López J; Calvo C
    Toxics; 2021 Jul; 9(7):. PubMed ID: 34357905
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bio-degradation of oily food waste employing thermophilic bacterial strains.
    Awasthi MK; Selvam A; Chan MT; Wong JWC
    Bioresour Technol; 2018 Jan; 248(Pt A):141-147. PubMed ID: 28684181
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of mineral nutrients, sludge application rate, and application frequency on biodegradation of two oily sludges.
    Brown KW; Donnelly KC; Deuel LE
    Microb Ecol; 1983 Dec; 9(4):363-73. PubMed ID: 24221824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.