BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17434789)

  • 1. Trehalose 6-phosphate.
    Paul M
    Curr Opin Plant Biol; 2007 Jun; 10(3):303-9. PubMed ID: 17434789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trehalose 6-phosphate: a signal of sucrose status.
    Paul MJ
    Biochem J; 2008 May; 412(1):e1-2. PubMed ID: 18426388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase.
    Kolbe A; Tiessen A; Schluepmann H; Paul M; Ulrich S; Geigenberger P
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):11118-23. PubMed ID: 16046541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate.
    O'Hara LE; Paul MJ; Wingler A
    Mol Plant; 2013 Mar; 6(2):261-74. PubMed ID: 23100484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting.
    Debast S; Nunes-Nesi A; Hajirezaei MR; Hofmann J; Sonnewald U; Fernie AR; Börnke F
    Plant Physiol; 2011 Aug; 156(4):1754-71. PubMed ID: 21670224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The signal metabolite trehalose-6-phosphate inhibits the sucrolytic activity of sucrose synthase from developing castor beans.
    Fedosejevs ET; Feil R; Lunn JE; Plaxton WC
    FEBS Lett; 2018 Aug; 592(15):2525-2532. PubMed ID: 30025148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trehalose biosynthesis in response to abiotic stresses.
    Iordachescu M; Imai R
    J Integr Plant Biol; 2008 Oct; 50(10):1223-9. PubMed ID: 19017109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism control over growth: a case for trehalose-6-phosphate in plants.
    Schluepmann H; Berke L; Sanchez-Perez GF
    J Exp Bot; 2012 May; 63(9):3379-90. PubMed ID: 22058405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana.
    Schluepmann H; Pellny T; van Dijken A; Smeekens S; Paul M
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6849-54. PubMed ID: 12748379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana.
    Ponnu J; Schlereth A; Zacharaki V; Działo MA; Abel C; Feil R; Schmid M; Wahl V
    Plant J; 2020 Nov; 104(3):768-780. PubMed ID: 32799402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation.
    Schluepmann H; van Dijken A; Aghdasi M; Wobbes B; Paul M; Smeekens S
    Plant Physiol; 2004 Jun; 135(2):879-90. PubMed ID: 15181209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trehalose 6-Phosphate Regulates Photosynthesis and Assimilate Partitioning in Reproductive Tissue.
    Oszvald M; Primavesi LF; Griffiths CA; Cohn J; Basu SS; Nuccio ML; Paul MJ
    Plant Physiol; 2018 Apr; 176(4):2623-2638. PubMed ID: 29437777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability.
    Wingler A; Delatte TL; O'Hara LE; Primavesi LF; Jhurreea D; Paul MJ; Schluepmann H
    Plant Physiol; 2012 Mar; 158(3):1241-51. PubMed ID: 22247267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation.
    Nunes C; O'Hara LE; Primavesi LF; Delatte TL; Schluepmann H; Somsen GW; Silva AB; Fevereiro PS; Wingler A; Paul MJ
    Plant Physiol; 2013 Jul; 162(3):1720-32. PubMed ID: 23735508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement.
    Miret JA; Griffiths CA; Paul MJ
    J Plant Physiol; 2024 Mar; 294():154188. PubMed ID: 38295650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar signals and molecular networks controlling plant growth.
    Smeekens S; Ma J; Hanson J; Rolland F
    Curr Opin Plant Biol; 2010 Jun; 13(3):274-9. PubMed ID: 20056477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness.
    Henry C; Bledsoe SW; Siekman A; Kollman A; Waters BM; Feil R; Stitt M; Lagrimini LM
    J Exp Bot; 2014 Nov; 65(20):5959-73. PubMed ID: 25271261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of growth by the trehalose pathway: relationship to temperature and sucrose.
    Nunes C; Schluepmann H; Delatte TL; Wingler A; Silva AB; Fevereiro PS; Jansen M; Fiorani F; Wiese-Klinkenberg A; Paul M
    Plant Signal Behav; 2013; 8(12):e26626. PubMed ID: 24084646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.
    Paul MJ; Oszvald M; Jesus C; Rajulu C; Griffiths CA
    J Exp Bot; 2017 Jul; 68(16):4455-4462. PubMed ID: 28981769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.