These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 17434874)
1. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. McMillan DG; Keis S; Dimroth P; Cook GM J Biol Chem; 2007 Jun; 282(24):17395-404. PubMed ID: 17434874 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit. Keis S; Stocker A; Dimroth P; Cook GM J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672 [TBL] [Abstract][Full Text] [Related]
3. Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. Cook GM; Keis S; Morgan HW; von Ballmoos C; Matthey U; Kaim G; Dimroth P J Bacteriol; 2003 Aug; 185(15):4442-9. PubMed ID: 12867453 [TBL] [Abstract][Full Text] [Related]
4. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Stocker A; Keis S; Vonck J; Cook GM; Dimroth P Structure; 2007 Aug; 15(8):904-14. PubMed ID: 17697996 [TBL] [Abstract][Full Text] [Related]
5. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Meier T; Morgner N; Matthies D; Pogoryelov D; Keis S; Cook GM; Dimroth P; Brutschy B Mol Microbiol; 2007 Sep; 65(5):1181-92. PubMed ID: 17645441 [TBL] [Abstract][Full Text] [Related]
6. Cloning and molecular characterization of the atp operon encoding for the F1F0-ATP synthase from a thermoalkaliphilic Bacillus sp. strain TA2.A1. Keis S; Kaim G; Dimroth P; Cook GM Biochim Biophys Acta; 2004 Jan; 1676(1):112-7. PubMed ID: 14732496 [TBL] [Abstract][Full Text] [Related]
7. pKa of the essential Glu54 and backbone conformation for subunit c from the H+-coupled F1F0 ATP synthase from an alkaliphilic Bacillus. Rivera-Torres IO; Krueger-Koplin RD; Hicks DB; Cahill SM; Krulwich TA; Girvin ME FEBS Lett; 2004 Sep; 575(1-3):131-5. PubMed ID: 15388347 [TBL] [Abstract][Full Text] [Related]
8. The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile-specific residue Lys-180 and other residues that support alkaliphile oxidative phosphorylation. Fujisawa M; Fackelmayer OJ; Liu J; Krulwich TA; Hicks DB J Biol Chem; 2010 Oct; 285(42):32105-15. PubMed ID: 20716528 [TBL] [Abstract][Full Text] [Related]
9. Insights into the regulatory function of the Krah A; Zarco-Zavala M; McMillan DGG Open Biol; 2018 May; 8(5):. PubMed ID: 29769322 [TBL] [Abstract][Full Text] [Related]
10. Two distinct proton binding sites in the ATP synthase family. von Ballmoos C; Dimroth P Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472 [TBL] [Abstract][Full Text] [Related]
11. The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. Matthies D; Preiss L; Klyszejko AL; Muller DJ; Cook GM; Vonck J; Meier T J Mol Biol; 2009 May; 388(3):611-8. PubMed ID: 19327366 [TBL] [Abstract][Full Text] [Related]
12. Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel. Mitome N; Ono S; Sato H; Suzuki T; Sone N; Yoshida M Biochem J; 2010 Aug; 430(1):171-7. PubMed ID: 20518749 [TBL] [Abstract][Full Text] [Related]
13. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. Bogdanović N; Sundararaman L; Kamariah N; Tyagi A; Bhushan S; Ragunathan P; Shin J; Dick T; Grüber G J Struct Biol; 2018 Dec; 204(3):420-434. PubMed ID: 30342092 [TBL] [Abstract][Full Text] [Related]
14. Purification, crystallization, and properties of F1-ATPase complexes from the thermoalkaliphilic Bacillus sp. strain TA2.A1. Stocker A; Keis S; Cook GM; Dimroth P J Struct Biol; 2005 Nov; 152(2):140-5. PubMed ID: 16226039 [TBL] [Abstract][Full Text] [Related]
15. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase. Boltz KW; Frasch WD Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104 [TBL] [Abstract][Full Text] [Related]
16. Variations of subunit {varepsilon} of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Biukovic G; Basak S; Manimekalai MS; Rishikesan S; Roessle M; Dick T; Rao SP; Hunke C; Grüber G Antimicrob Agents Chemother; 2013 Jan; 57(1):168-76. PubMed ID: 23089752 [TBL] [Abstract][Full Text] [Related]
17. Making the right moves. Bianchet MA; Amzel LM Structure; 2007 Aug; 15(8):885-6. PubMed ID: 17697991 [TBL] [Abstract][Full Text] [Related]
18. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase. Kucharczyk R; Ezkurdia N; Couplan E; Procaccio V; Ackerman SH; Blondel M; di Rago JP Biochim Biophys Acta; 2010; 1797(6-7):1105-12. PubMed ID: 20056103 [TBL] [Abstract][Full Text] [Related]
19. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. Ferguson SA; Keis S; Cook GM J Bacteriol; 2006 Jul; 188(14):5045-54. PubMed ID: 16816177 [TBL] [Abstract][Full Text] [Related]
20. pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Krulwich TA; Ito M; Hicks DB; Gilmour R; Guffanti AA Extremophiles; 1998 Aug; 2(3):217-22. PubMed ID: 9783168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]