BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 17435244)

  • 1. Origin and evolution of human microRNAs from transposable elements.
    Piriyapongsa J; Mariño-Ramírez L; Jordan IK
    Genetics; 2007 Jun; 176(2):1323-37. PubMed ID: 17435244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional microRNAs and target sites are created by lineage-specific transposition.
    Spengler RM; Oakley CK; Davidson BL
    Hum Mol Genet; 2014 Apr; 23(7):1783-93. PubMed ID: 24234653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human.
    Qin S; Jin P; Zhou X; Chen L; Ma F
    PLoS One; 2015; 10(6):e0131365. PubMed ID: 26115450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domestication of transposable elements into MicroRNA genes in plants.
    Li Y; Li C; Xia J; Jin Y
    PLoS One; 2011 May; 6(5):e19212. PubMed ID: 21559273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development.
    Playfoot CJ; Sheppard S; Planet E; Trono D
    RNA; 2022 Sep; 28(9):1157-1171. PubMed ID: 35732404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA.
    Polavarapu N; Mariño-Ramírez L; Landsman D; McDonald JF; Jordan IK
    BMC Genomics; 2008 May; 9():226. PubMed ID: 18485226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual coding of siRNAs and miRNAs by plant transposable elements.
    Piriyapongsa J; Jordan IK
    RNA; 2008 May; 14(5):814-21. PubMed ID: 18367716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LINE-2 transposable elements are a source of functional human microRNAs and target sites.
    Petri R; Brattås PL; Sharma Y; Jönsson ME; Pircs K; Bengzon J; Jakobsson J
    PLoS Genet; 2019 Mar; 15(3):e1008036. PubMed ID: 30865625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of a substantial fraction of human regulatory sequences from transposable elements.
    Jordan IK; Rogozin IB; Glazko GV; Koonin EV
    Trends Genet; 2003 Feb; 19(2):68-72. PubMed ID: 12547512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of human microRNA genes from miniature inverted-repeat transposable elements.
    Piriyapongsa J; Jordan IK
    PLoS One; 2007 Feb; 2(2):e203. PubMed ID: 17301878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics Analysis of Evolution and Human Disease Related Transposable Element-Derived microRNAs.
    Lee HE; Huh JW; Kim HS
    Life (Basel); 2020 Jun; 10(6):. PubMed ID: 32630504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes.
    R Lorenzetti AP; A de Antonio GY; Paschoal AR; Domingues DS
    Funct Integr Genomics; 2016 May; 16(3):235-42. PubMed ID: 26887375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice.
    Ou-Yang F; Luo QJ; Zhang Y; Richardson CR; Jiang Y; Rock CD
    Funct Integr Genomics; 2013 Jun; 13(2):207-16. PubMed ID: 23420033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats.
    Platt RN; Vandewege MW; Kern C; Schmidt CJ; Hoffmann FG; Ray DA
    Mol Biol Evol; 2014 Jun; 31(6):1536-45. PubMed ID: 24692655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of microRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model.
    Zhang Y; Jiang WK; Gao LZ
    PLoS One; 2011; 6(12):e28073. PubMed ID: 22194805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication.
    Kanak M; Alseiari M; Balasubramanian P; Addanki K; Aggarwal M; Noorali S; Kalsum A; Mahalingam K; Pace G; Panasik N; Bagasra O
    Appl Immunohistochem Mol Morphol; 2010 Dec; 18(6):532-45. PubMed ID: 20502318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A c-Myc regulatory subnetwork from human transposable element sequences.
    Wang J; Bowen NJ; Mariño-Ramírez L; Jordan IK
    Mol Biosyst; 2009 Dec; 5(12):1831-9. PubMed ID: 19763338
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Marakli S
    J Biomol Struct Dyn; 2020 Jul; 38(10):3098-3109. PubMed ID: 31402758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.
    Ramsay L; Marchetto MC; Caron M; Chen SH; Busche S; Kwan T; Pastinen T; Gage FH; Bourque G
    BMC Genomics; 2017 Feb; 18(1):214. PubMed ID: 28245871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of transposable elements on the human genome.
    Deragon JM; Capy P
    Ann Med; 2000 May; 32(4):264-73. PubMed ID: 10852143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.