BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17435328)

  • 1. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China.
    Wang W; Guo J; Oikawa T
    J Biosci; 2007 Mar; 32(2):375-84. PubMed ID: 17435328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the distinguishing of root respiration from soil microbial respiration in a Leymus chinensis steppe in Inner Mongolia, China].
    Shi JJ; Geng YB
    Huan Jing Ke Xue; 2014 Jan; 35(1):341-7. PubMed ID: 24720225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on the free-grazed steppes root respiration of growing season in the Xilin River Basin, China].
    Liu LX; Dong YS; Qi YC
    Huan Jing Ke Xue; 2006 Dec; 27(12):2376-81. PubMed ID: 17304826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of distinguish root respiration from total soil respiration by root exclusion method in the temperate semi-arid grassland in Inner Mongolia, China].
    Liu LX; Dong YS; Qi YC; Zhou LX
    Huan Jing Ke Xue; 2007 Apr; 28(4):689-94. PubMed ID: 17639922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dynamics and budget in a Zoysia japonica grassland, central Japan.
    Dhital D; Yashiro Y; Ohtsuka T; Noda H; Shizu Y; Koizumi H
    J Plant Res; 2010 Jul; 123(4):519-30. PubMed ID: 20033467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of nitrogen addition on microbial respiration and root respiration in a sandy grassland.].
    Lin LT; Sun XK; Yu ZY; Wang KL; Zeng H
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2189-2196. PubMed ID: 29737126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Variation of below-ground carbon sequestration under long term cultivation and grazing in the typical steppe of Nei Monggol in North China].
    Yan YC; Tang HP; Chang RY; Liu L
    Huan Jing Ke Xue; 2008 May; 29(5):1388-93. PubMed ID: 18624212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2.
    Hu S; Chapin FS; Firestone MK; Field CB; Chiariello NR
    Nature; 2001 Jan; 409(6817):188-91. PubMed ID: 11196641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [CO2 release from typical Stipa grandis grassland soil].
    Cui X; Chen S; Chen Z
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):390-4. PubMed ID: 11767639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifting plant species composition in response to climate change stabilizes grassland primary production.
    Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in rainy area of West China].
    Tu LH; Hu TX; Zhang J; He YY; Tian XY; Xiao YL
    Ying Yong Sheng Tai Xue Bao; 2010 Oct; 21(10):2472-8. PubMed ID: 21328931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing grassland degradation stimulates the non-growing season CO
    Ma L; Yao Z; Zheng X; Zhang H; Wang K; Zhu B; Wang R; Zhang W; Liu C
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26576-26591. PubMed ID: 29995209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of soil faunal community composition on model grassland ecosystems.
    Bradford MA; Jones TH; Bardgett RD; Black HI; Boag B; Bonkowski M; Cook R; Eggers T; Gange AC; Grayston SJ; Kandeler E; McCaig AE; Newington JE; Prosser JI; Setälä H; Staddon PL; Tordoff GM; Tscherko D; Lawton JH
    Science; 2002 Oct; 298(5593):615-8. PubMed ID: 12386334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen deposition enhances carbon sequestration by plantations in northern China.
    Du Z; Wang W; Zeng W; Zeng H
    PLoS One; 2014; 9(2):e87975. PubMed ID: 24498416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition.
    Li Y; Liu Y; Wu S; Niu L; Tian Y
    Sci Rep; 2015 Dec; 5():18496. PubMed ID: 26678303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest.
    Jackson RB; Cook CW; Pippen JS; Palmer SM
    Ecology; 2009 Dec; 90(12):3352-66. PubMed ID: 20120805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3.
    Pregitzer KS; Burton AJ; King JS; Zak DR
    New Phytol; 2008; 180(1):153-161. PubMed ID: 18643941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide fluxes in a spatially and temporally heterogeneous temperate grassland.
    Risch AC; Frank DA
    Oecologia; 2006 Mar; 147(2):291-302. PubMed ID: 16205950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of soil respiration components and their temperature sensitivity in a Pleioblastus amarus plantation in rainy area of West China].
    Tian XY; Tu LH; Hu TX; Zhang J; He YY; Xiao YL
    Ying Yong Sheng Tai Xue Bao; 2012 Feb; 23(2):293-300. PubMed ID: 22586950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated nitrogen deposition significantly reduces soil respiration in an evergreen broadleaf forest in western China.
    Zhou S; Xiang Y; Tie L; Han B; Huang C
    PLoS One; 2018; 13(9):e0204661. PubMed ID: 30261036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.