BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17435353)

  • 1. Variations in the light-induced suppression of nocturnal melatonin with special reference to variations in the pupillary light reflex in humans.
    Yasukouchi A; Hazama T; Kozaki T
    J Physiol Anthropol; 2007 Mar; 26(2):113-21. PubMed ID: 17435353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pupil size regulation of threshold of light-induced melatonin suppression.
    Gaddy JR; Rollag MD; Brainard GC
    J Clin Endocrinol Metab; 1993 Nov; 77(5):1398-401. PubMed ID: 8077340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Living in Biological Darkness: Objective Sleepiness and the Pupillary Light Responses Are Affected by Different Metameric Lighting Conditions during Daytime.
    de Zeeuw J; Papakonstantinou A; Nowozin C; Stotz S; Zaleska M; Hädel S; Bes F; Münch M; Kunz D
    J Biol Rhythms; 2019 Aug; 34(4):410-431. PubMed ID: 31156018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different light intensities in the morning on dim light melatonin onset.
    Kozaki T; Toda N; Noguchi H; Yasukouchi A
    J Physiol Anthropol; 2011; 30(3):97-102. PubMed ID: 21636952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nasal versus temporal illumination of the human retina: effects on core body temperature, melatonin, and circadian phase.
    Rüger M; Gordijn MC; Beersma DG; de Vries B; Daan S
    J Biol Rhythms; 2005 Feb; 20(1):60-70. PubMed ID: 15654071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness.
    Nowozin C; Wahnschaffe A; Rodenbeck A; de Zeeuw J; Hädel S; Kozakov R; Schöpp H; Münch M; Kunz D
    Curr Alzheimer Res; 2017; 14(10):1042-1052. PubMed ID: 28545361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses.
    Münch M; Léon L; Crippa SV; Kawasaki A
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4546-55. PubMed ID: 22669721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of light at night on melatonin suppression in children.
    Higuchi S; Nagafuchi Y; Lee SI; Harada T
    J Clin Endocrinol Metab; 2014 Sep; 99(9):3298-303. PubMed ID: 24840814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature.
    Souman JL; Borra T; de Goijer I; Schlangen LJM; Vlaskamp BNS; Lucassen MP
    J Biol Rhythms; 2018 Aug; 33(4):420-431. PubMed ID: 29984614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-hour exposure to moderate illuminance (500 lux) shifts the human melatonin rhythm.
    Laakso ML; Hätönen T; Stenberg D; Alila A; Smith S
    J Pineal Res; 1993 Aug; 15(1):21-6. PubMed ID: 8229642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The significance of changes in pupil size during straylight measurement and with varying environmental illuminance.
    Gholami S; Reus NJ; van den Berg TJTP
    J Optom; 2018; 11(3):167-173. PubMed ID: 29137883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantal melatonin suppression by exposure to low intensity light in man.
    McIntyre IM; Norman TR; Burrows GD; Armstrong SM
    Life Sci; 1989; 45(4):327-32. PubMed ID: 2761346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction.
    Ho Mien I; Chua EC; Lau P; Tan LC; Lee IT; Yeo SC; Tan SS; Gooley JJ
    PLoS One; 2014; 9(5):e96532. PubMed ID: 24797245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness.
    van de Werken M; Giménez MC; de Vries B; Beersma DG; Gordijn MC
    Chronobiol Int; 2013 Aug; 30(7):843-54. PubMed ID: 23705821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions.
    Brown TM
    J Pineal Res; 2020 Aug; 69(1):e12655. PubMed ID: 32248548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circadian response of intrinsically photosensitive retinal ganglion cells.
    Zele AJ; Feigl B; Smith SS; Markwell EL
    PLoS One; 2011 Mar; 6(3):e17860. PubMed ID: 21423755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-individual difference in pupil size correlates to suppression of melatonin by exposure to light.
    Higuchi S; Ishibashi K; Aritake S; Enomoto M; Hida A; Tamura M; Kozaki T; Motohashi Y; Mishima K
    Neurosci Lett; 2008 Jul; 440(1):23-6. PubMed ID: 18539392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlated color temperature and light intensity: Complementary features in non-visual light field.
    Arguelles-Prieto R; Madrid JA; Rol MA; Bonmati-Carrion MA
    PLoS One; 2021; 16(7):e0254171. PubMed ID: 34252130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High sensitivity and interindividual variability in the response of the human circadian system to evening light.
    Phillips AJK; Vidafar P; Burns AC; McGlashan EM; Anderson C; Rajaratnam SMW; Lockley SW; Cain SW
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12019-12024. PubMed ID: 31138694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No melatonin suppression by illumination of popliteal fossae or eyelids.
    Jean-Louis G; Kripke DF; Cole RJ; Elliot JA
    J Biol Rhythms; 2000 Jun; 15(3):265-9. PubMed ID: 10885880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.