These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17436108)

  • 1. Learning to translate sequence and structure to function: identifying DNA binding and membrane binding proteins.
    Langlois RE; Carson MB; Bhardwaj N; Lu H
    Ann Biomed Eng; 2007 Jun; 35(6):1043-52. PubMed ID: 17436108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional discrimination of membrane proteins using machine learning techniques.
    Gromiha MM; Yabuki Y
    BMC Bioinformatics; 2008 Mar; 9():135. PubMed ID: 18312695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of DNA-binding residues from sequence features.
    Wang L; Brown SJ
    J Bioinform Comput Biol; 2006 Dec; 4(6):1141-58. PubMed ID: 17245807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops.
    Lasso G; Antoniw JF; Mullins JG
    Bioinformatics; 2006 Jul; 22(14):e290-7. PubMed ID: 16873484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins.
    Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2003; 19 Suppl 1():i205-11. PubMed ID: 12855459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved method for predicting beta-turn using support vector machine.
    Zhang Q; Yoon S; Welsh WJ
    Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein structural class with Rough Sets.
    Cao Y; Liu S; Zhang L; Qin J; Wang J; Tang K
    BMC Bioinformatics; 2006 Jan; 7():20. PubMed ID: 16412240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural alignment kernel for protein structures.
    Qiu J; Hue M; Ben-Hur A; Vert JP; Noble WS
    Bioinformatics; 2007 May; 23(9):1090-8. PubMed ID: 17234638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.
    Pascual-García A; Abia D; Ortiz AR; Bastolla U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal kernel machine for the prediction of functional sites in proteins.
    Yang ZR
    IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):100-6. PubMed ID: 15719937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHORAL: a differential geometry approach to the prediction of the cores of protein structures.
    Montalvão RW; Smith RE; Lovell SC; Blundell TL
    Bioinformatics; 2005 Oct; 21(19):3719-25. PubMed ID: 16046494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of protein function using the local similarity.
    Alexandrov K; Sobolev B; Filimonov D; Poroikov V
    J Bioinform Comput Biol; 2008 Aug; 6(4):709-25. PubMed ID: 18763738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated functional classification of experimental and predicted protein structures.
    Wang K; Samudrala R
    BMC Bioinformatics; 2006 Jun; 7():278. PubMed ID: 16749925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-label classifier for prediction membrane protein functional types in animal.
    Zou HL
    J Membr Biol; 2014 Nov; 247(11):1141-8. PubMed ID: 25107302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision tree based information integration for automated protein classification.
    Camoğlu O; Can T; Singh AK; Wang YF
    J Bioinform Comput Biol; 2005 Jun; 3(3):717-42. PubMed ID: 16108091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast fourier transform-based support vector machine for prediction of G-protein coupled receptor subfamilies.
    Guo YZ; Li ML; Wang KL; Wen ZN; Lu MC; Liu LX; Jiang L
    Acta Biochim Biophys Sin (Shanghai); 2005 Nov; 37(11):759-66. PubMed ID: 16270155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.