These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17436173)

  • 21. Use of a geared wheelchair wheel to reduce propulsive muscular demand during ramp ascent: analysis of muscle activation and kinematics.
    Howarth SJ; Pronovost LM; Polgar JM; Dickerson CR; Callaghan JP
    Clin Biomech (Bristol, Avon); 2010 Jan; 25(1):21-8. PubMed ID: 19880226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Range of motion and stroke frequency differences between manual wheelchair propulsion and pushrim-activated power-assisted wheelchair propulsion.
    Corfman TA; Cooper RA; Boninger ML; Koontz AM; Fitzgerald SG
    J Spinal Cord Med; 2003; 26(2):135-40. PubMed ID: 12828290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reliability and validity of the Microsoft Kinect for assessment of manual wheelchair propulsion.
    Milgrom R; Foreman M; Standeven J; Engsberg JR; Morgan KA
    J Rehabil Res Dev; 2016; 53(6):901-918. PubMed ID: 28475198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical load on the upper extremity during wheelchair activities.
    Van Drongelen S; Van der Woude LH; Janssen TW; Angenot EL; Chadwick EK; Veeger DH
    Arch Phys Med Rehabil; 2005 Jun; 86(6):1214-20. PubMed ID: 15954062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shoulder pain in cases of spinal injury: influence of the position of the wheelchair seat.
    Giner-Pascual M; Alcanyis-Alberola M; Millan González L; Aguilar-Rodríguez M; Querol F
    Int J Rehabil Res; 2011 Dec; 34(4):282-9. PubMed ID: 21971486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconfiguration of the upper extremity relative to the pushrim affects load distribution during wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Med Eng Phys; 2013 Aug; 35(8):1141-9. PubMed ID: 23352613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two approaches to manual wheelchair configuration and effects on function for individuals with acquired brain injury.
    Regier AD; Berryman A; Hays K; Smith C; Staniszewski K; Gerber D
    NeuroRehabilitation; 2014; 35(3):467-73. PubMed ID: 25227544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reverse Shoulder Arthroplasty in Weight-Bearing Shoulders of Wheelchair-Dependent Patients: Outcomes and Complications at 2 to 5 years.
    Alentorn-Geli E; Wanderman NR; Assenmacher AT; Sánchez-Sotelo J; Cofield RH; Sperling JW
    PM R; 2018 Jun; 10(6):607-615. PubMed ID: 29111467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wheelchair configuration and postural alignment in persons with spinal cord injury.
    Hastings JD; Fanucchi ER; Burns SP
    Arch Phys Med Rehabil; 2003 Apr; 84(4):528-34. PubMed ID: 12690591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion.
    Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT
    J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association of Pectoralis Minor Muscle Extensibility, Shoulder Mobility, and Duration of Manual Wheelchair Use.
    Finley MA; Ebaugh D
    Arch Phys Med Rehabil; 2017 Oct; 98(10):2028-2033. PubMed ID: 28465225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic Three-Dimensional Ultrasound to Evaluate Scapular Movement Among Manual Wheelchair Users and Healthy Controls.
    Worobey LA; Lin YS; Koontz AM; Boninger ML
    Top Spinal Cord Inj Rehabil; 2015; 21(4):303-12. PubMed ID: 26689695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wheelchair axle position effect on start-up propulsion performance of persons with tetraplegia.
    Freixes O; Fernández SA; Gatti MA; Crespo MJ; Olmos LE; Rubel IF
    J Rehabil Res Dev; 2010; 47(7):661-8. PubMed ID: 21110262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pilot investigation of anterior tilt use among power wheelchair users.
    Rice LA; Yarnot R; Mills S; Sonsoff J
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):152-159. PubMed ID: 31348680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studying mechanical load at body-seat interface during dynamic activities such as wheelchair propulsion: a scoping review.
    Paquin C; Rozaire J; Chenu O; Gelis A; Dubuis L; Duprey S
    Disabil Rehabil Assist Technol; 2024 Jul; 19(5):1879-1889. PubMed ID: 37610140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.