BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 17436185)

  • 1. [MRI in the early stage of spinal cord injury: does it have clinical relevance? An experimental study].
    Hannmann TT; Freund M
    Rofo; 2007 May; 179(5):506-15. PubMed ID: 17436185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of magnetic resonance imaging in evaluating injuries to the pediatric thoracolumbar spine.
    Sledge JB; Allred D; Hyman J
    J Pediatr Orthop; 2001; 21(3):288-93. PubMed ID: 11371807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese enhanced magnetic resonance imaging in a contusion model of spinal cord injury in rats: correlation with motor function.
    Walder N; Petter-Puchner AH; Brejnikow M; Redl H; Essig M; Stieltjes B
    Invest Radiol; 2008 May; 43(5):277-83. PubMed ID: 18424947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging of lumbar intervertebral discs in elderly patients with minor trauma.
    Afzal S; Akbar S
    Eur J Radiol; 2009 May; 70(2):352-6. PubMed ID: 18455897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese-enhanced magnetic resonance imaging in experimental spinal cord injury: correlation between T1-weighted changes and Mn(2+) concentrations.
    Martirosyan NL; Bennett KM; Theodore N; Preul MC
    Neurosurgery; 2010 Jan; 66(1):131-6. PubMed ID: 20023543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo high-resolution imaging of the injured rat spinal cord using a 3.0T clinical MR scanner.
    Sandner B; Pillai DR; Heidemann RM; Schuierer G; Mueller MF; Bogdahn U; Schlachetzki F; Weidner N
    J Magn Reson Imaging; 2009 Mar; 29(3):725-30. PubMed ID: 19243068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of spinal cord compression seen on magnetic resonance imaging with clinical outcome in 67 dogs with thoracolumbar intervertebral disc extrusion.
    Penning V; Platt SR; Dennis R; Cappello R; Adams V
    J Small Anim Pract; 2006 Nov; 47(11):644-50. PubMed ID: 17076787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR imaging of traumatic spinal injuries.
    Mhuircheartaigh NN; Kerr JM; Murray JG
    Semin Musculoskelet Radiol; 2006 Dec; 10(4):293-307. PubMed ID: 17387643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon: methodology, behavioral analysis, and histopathology.
    Martin D; Schoenen J; Delrée P; Gilson V; Rogister B; Leprince P; Stevenaert A; Moonen G
    J Neurosci Res; 1992 Aug; 32(4):539-50. PubMed ID: 1527800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of the spinal canal and cord.
    Kingsley DP
    Curr Opin Neurol Neurosurg; 1990 Aug; 3(4):592-6. PubMed ID: 10148423
    [No Abstract]   [Full Text] [Related]  

  • 11. Magnetic resonance imaging of mesenchymal stem cells labeled with dual (MR and fluorescence) agents in rat spinal cord injury.
    Shen J; Zhong XM; Duan XH; Cheng LN; Hong GB; Bi XB; Liu Y
    Acad Radiol; 2009 Sep; 16(9):1142-54. PubMed ID: 19660710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative and reproducible method to assess cord compression and canal stenosis after cervical spine trauma: a study of interrater and intrarater reliability.
    Furlan JC; Fehlings MG; Massicotte EM; Aarabi B; Vaccaro AR; Bono CM; Madrazo I; Villanueva C; Grauer JN; Mikulis D
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2083-91. PubMed ID: 17762809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging (MRI) of thoracolumbar fractures.
    Blumenkopf B; Juneau PA
    J Spinal Disord; 1988; 1(2):144-50. PubMed ID: 2980071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of diffusion-weighted MRI in thoracic spinal cord injury without radiographic abnormality.
    Shen H; Tang Y; Huang L; Yang R; Wu Y; Wang P; Shi Y; He X; Liu H; Ye J
    Int Orthop; 2007 Jun; 31(3):375-83. PubMed ID: 16835743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid, postmortem 9.4 T MRI of spinal cord injury: correlation with histology and survival times.
    Scholtes F; Phan-Ba R; Theunissen E; Adriaensens P; Brook G; Franzen R; Bouhy D; Gelan J; Martin D; Schoenen J
    J Neurosci Methods; 2008 Sep; 174(2):157-67. PubMed ID: 18708093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-year clinical and magnetic resonance imaging follow-up of Doberman Pinschers with cervical spondylomyelopathy treated medically or surgically.
    da Costa RC; Parent JM
    J Am Vet Med Assoc; 2007 Jul; 231(2):243-50. PubMed ID: 17630890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-field magnetic resonance imaging findings of the caudal portion of the cervical region in clinically normal Doberman Pinschers and Foxhounds.
    De Decker S; Gielen IM; Duchateau L; Van Soens I; Bavegems V; Bosmans T; van Bree HJ; Van Ham LM
    Am J Vet Res; 2010 Apr; 71(4):428-34. PubMed ID: 20367050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal evolution of spinal cord infarction in an in vivo experimental study of canine models characterized by diffusion-weighted imaging.
    Zhang JS; Huan Y; Sun LJ; Ge YL; Zhang XX; Chang YJ
    J Magn Reson Imaging; 2007 Oct; 26(4):848-54. PubMed ID: 17896378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Injuries of the spine: current concepts in radiologic diagnosis].
    du Mesnil de Rochemont R; Lanfermann H; Heindel W
    Aktuelle Radiol; 1997 Jan; 7(1):1-13. PubMed ID: 9138516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.