These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 17436352)
21. Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide. Risberg ED; Jalilehvand F; Leung BO; Pettersson LG; Sandström M Dalton Trans; 2009 May; (18):3542-58. PubMed ID: 19381417 [TBL] [Abstract][Full Text] [Related]
22. Anomeric effects in the symmetrical and asymmetrical structures of triethylamine. Blue-shifts of the C-h stretching vibrations in complexed and protonated triethylamine. Chandra AK; Parveen S; Zeegers-Huyskens T J Phys Chem A; 2007 Sep; 111(36):8884-91. PubMed ID: 17711270 [TBL] [Abstract][Full Text] [Related]
23. Synthesis and characterization of aluminum- and gallium-bridged [1.1]chromarenophanes and [1.1]molybdarenophanes. Lund CL; Schachner JA; Burgess IJ; Quail JW; Schatte G; Müller J Inorg Chem; 2008 Jul; 47(13):5992-6000. PubMed ID: 18533628 [TBL] [Abstract][Full Text] [Related]
24. Downfield proton chemical shifts are not reliable aromaticity indicators. Wannere CS; Corminboeuf C; Allen WD; Schaefer HF; Schleyer Pv Org Lett; 2005 Apr; 7(8):1457-60. PubMed ID: 15816726 [TBL] [Abstract][Full Text] [Related]
25. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study. Hrobárik P; Horváth B; Sigmundová I; Zahradník P; Malkina OL Magn Reson Chem; 2007 Nov; 45(11):942-53. PubMed ID: 17924356 [TBL] [Abstract][Full Text] [Related]
26. Universal NMR databases for contiguous polyols. Higashibayashi S; Czechtizky W; Kobayashi Y; Kishi Y J Am Chem Soc; 2003 Nov; 125(47):14379-93. PubMed ID: 14624586 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and dynamic NMR studies of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} complexes. Boag NM; Haghgooie H; Hassanzadeh A Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):156-9. PubMed ID: 17459761 [TBL] [Abstract][Full Text] [Related]
28. Why the hydration energy of Au+ is larger for the second water molecule than the first one: skewed orbitals overlap. Lee HM; Diefenbach M; Suh SB; Tarakeshwar P; Kim KS J Chem Phys; 2005 Aug; 123(7):074328. PubMed ID: 16229591 [TBL] [Abstract][Full Text] [Related]
30. Highly efficient Peterson olefination leading to unsaturated selenoamides and their characterization. Murai T; Fujishima A; Iwamoto C; Kato S J Org Chem; 2003 Oct; 68(21):7979-82. PubMed ID: 14535773 [TBL] [Abstract][Full Text] [Related]
31. Theoretical studies on hydrogen bonding, NMR chemical shifts and electron density topography in alpha, beta and gamma-cyclodextrin conformers. Pinjari RV; Joshi KA; Gejji SP J Phys Chem A; 2007 Dec; 111(51):13583-9. PubMed ID: 18052135 [TBL] [Abstract][Full Text] [Related]
32. Magnetic euripi in corannulene. Monaco G; Scott LT; Zanasi R J Phys Chem A; 2008 Sep; 112(35):8136-47. PubMed ID: 18693706 [TBL] [Abstract][Full Text] [Related]
33. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins. Mukkamala D; Zhang Y; Oldfield E J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558 [TBL] [Abstract][Full Text] [Related]
34. Theoretical study of C-H and N-H sigma-bond activation reactions by titinium(IV)-imido complex. Good understanding based on orbital interaction and theoretical proposal for N-H sigma-bond activation of ammonia. Ochi N; Nakao Y; Sato H; Sakaki S J Am Chem Soc; 2007 Jul; 129(27):8615-24. PubMed ID: 17579411 [TBL] [Abstract][Full Text] [Related]
35. Theoretical study of the effective Chemical Shielding Anisotropy (CSA) in peptide backbone, rating the impact of CSAs on the cross-correlated relaxations in L-alanyl-L-alanine. Benda L; Bour P; Müller N; Sychrovský V J Phys Chem B; 2009 Apr; 113(15):5273-81. PubMed ID: 19301831 [TBL] [Abstract][Full Text] [Related]
36. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides. del Rosal I; Maron L; Poteau R; Jolibois F Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699 [TBL] [Abstract][Full Text] [Related]
37. One-step and two-step spin-crossover iron(II) complexes of ((2-methylimidazol-4-yl)methylidene)histamine. Sato T; Nishi K; Iijima S; Kojima M; Matsumoto N Inorg Chem; 2009 Aug; 48(15):7211-29. PubMed ID: 19722691 [TBL] [Abstract][Full Text] [Related]
38. How do ring currents affect (1)h NMR chemical shifts? Wannere CS; Schleyer PV Org Lett; 2003 Mar; 5(5):605-8. PubMed ID: 12605470 [TBL] [Abstract][Full Text] [Related]
39. On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. da Silva RR; Ramalho TC; Santos JM; Figueroa-Villar JD J Phys Chem A; 2006 Jan; 110(3):1031-40. PubMed ID: 16420004 [TBL] [Abstract][Full Text] [Related]
40. The theoretical 77Se chemical shift as a probe of selenium state in selenoproteins and their mimics. Bayse CA Inorg Chem; 2004 Feb; 43(4):1208-10. PubMed ID: 14966951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]