These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 17436687)

  • 41. Degradation of humoral host defense by Candida albicans proteinase.
    Kaminishi H; Miyaguchi H; Tamaki T; Suenaga N; Hisamatsu M; Mihashi I; Matsumoto H; Maeda H; Hagihara Y
    Infect Immun; 1995 Mar; 63(3):984-8. PubMed ID: 7868271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Candida albicans zincophore and zinc transporter interactions with Zn(ii) and Ni(ii).
    Łoboda D; Rowińska-Żyrek M
    Dalton Trans; 2018 Feb; 47(8):2646-2654. PubMed ID: 29405215
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of growth conditions on the extracellular production of the aspartic proteinase by Candida albicans.
    Lam M; Peterkin V; Reiss E; Morrison CJ
    Adv Exp Med Biol; 1991; 306():265-7. PubMed ID: 1812715
    [No Abstract]   [Full Text] [Related]  

  • 44. Detection of Candida proteinase by enzyme immunoassay and interaction of the enzyme with alpha-2-macroglobulin.
    Rüchel R; Böning B
    J Immunol Methods; 1983 Jun; 61(1):107-16. PubMed ID: 6189916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Primary substrate specificities of secreted aspartic proteases of Candida albicans.
    Koelsch G; Tang J; Monod M; Foundling SI; Lin X
    Adv Exp Med Biol; 1998; 436():335-8. PubMed ID: 9561238
    [No Abstract]   [Full Text] [Related]  

  • 46. Functional aspects of secreted Candida proteinases.
    Hube B; Rüchel R; Monod M; Sanglard D; Odds FC
    Adv Exp Med Biol; 1998; 436():339-44. PubMed ID: 9561239
    [No Abstract]   [Full Text] [Related]  

  • 47. Metal-ion-assisted hydrolysis of dipeptides involving a serine residue in a neutral aqueous solution.
    Yashiro M; Sonobe Y; Yamamura A; Takarada T; Komiyama M; Fujii Y
    Org Biomol Chem; 2003 Feb; 1(4):629-32. PubMed ID: 12929447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of action of aspartic proteinases: application of transition-state analogue theory.
    Ołdziej S; Ciarkowski J
    J Comput Aided Mol Des; 1996 Dec; 10(6):583-8. PubMed ID: 9007691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PTSA-ZnCl2: an efficient catalyst for the synthesis of 1,2,4-oxadiazoles from amidoximes and organic nitriles.
    Augustine JK; Akabote V; Hegde SG; Alagarsamy P
    J Org Chem; 2009 Aug; 74(15):5640-3. PubMed ID: 19719253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of human serum albumin on the kinetics of N-glutaryl-L-phenylalanine p-nitroanilide hydrolysis catalyzed by α-chymotrypsin.
    Abuin E; Lissi E; Ahumada M; Calderón C
    Protein J; 2011 Feb; 30(2):143-7. PubMed ID: 21336975
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ZnCl2-mediated practical protocol for the synthesis of Amadori ketoses.
    Harohally NV; Srinivas SM; Umesh S
    Food Chem; 2014 Sep; 158():340-4. PubMed ID: 24731352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The low frequency motions of solvated Mn(II) and Ni(II) ions and their halide complexes.
    Sharma V; Böhm F; Schwaab G; Havenith M
    Phys Chem Chem Phys; 2014 Dec; 16(45):25101-10. PubMed ID: 25332014
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiplicity of peptide permeases in Candida albicans: evidence from novel chromophoric peptides.
    McCarthy PJ; Nisbet LJ; Boehm JC; Kingsbury WD
    J Bacteriol; 1985 Jun; 162(3):1024-9. PubMed ID: 3888953
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Candida albicans exhibit two classes of cell surface binding sites for serum albumin defined by their affinity, abundance and prospective role in interkingdom signalling.
    Teevan-Hanman C; O'Shea P
    PLoS One; 2021; 16(7):e0254593. PubMed ID: 34280221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theory and method of a priori computation of catalytic acts of aspartic and serine proteinases.
    Popov ME; Kashparov IV; Popov EM
    Adv Exp Med Biol; 1998; 436():123-6. PubMed ID: 9561209
    [No Abstract]   [Full Text] [Related]  

  • 56. Removal of Triphenylphosphine Oxide by Precipitation with Zinc Chloride in Polar Solvents.
    Batesky DC; Goldfogel MJ; Weix DJ
    J Org Chem; 2017 Oct; 82(19):9931-9936. PubMed ID: 28956444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DNA extraction by zinc.
    Kejnovský E; Kypr J
    Nucleic Acids Res; 1997 May; 25(9):1870-1. PubMed ID: 9108176
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effect of Zn(II) and Mn(II) on catalytic activity of aspartic proteinases from Candida albicans].
    Kutyreva MP; Galimzanova RR; Ulakhovich NA; Glushko NI
    Biomed Khim; 2007; 53(1):72-85. PubMed ID: 17436687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design, synthesis, inhibition studies, and molecular modeling of pepstatin analogues addressing different secreted aspartic proteinases of Candida albicans.
    Cadicamo CD; Mortier J; Wolber G; Hell M; Heinrich IE; Michel D; Semlin L; Berger U; Korting HC; Höltje HD; Koksch B; Borelli C
    Biochem Pharmacol; 2013 Apr; 85(7):881-7. PubMed ID: 23262278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosensor-based screening and characterization of HIV-1 inhibitor interactions with Sap 1, Sap 2, and Sap 3 from Candida albicans.
    Backman D; Monod M; Danielson UH
    J Biomol Screen; 2006 Mar; 11(2):165-75. PubMed ID: 16418316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.