These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17436886)

  • 21. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of a stair-climbing wheelchair mechanism with high single-step capability.
    Lawn MJ; Ishimatsu T
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):323-32. PubMed ID: 14518797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The experiences of using an anti-collision power wheelchair for three long-term care home residents with mild cognitive impairment.
    Wang RH; Kontos PC; Holliday PJ; Fernie GR
    Disabil Rehabil Assist Technol; 2011; 6(4):347-63. PubMed ID: 20846075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.
    Sharma V; Simpson R; Lopresti E; Schmeler M
    J Rehabil Res Dev; 2010; 47(9):877-90. PubMed ID: 21174252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using a smart wheelchair as a gaming device for floor-projected games: a mixed-reality environment for training powered-wheelchair driving skills.
    Secoli R; Zondervan D; Reinkensmeyer D
    Stud Health Technol Inform; 2012; 173():450-6. PubMed ID: 22357035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shared control strategies for human-machine interface in an intelligent wheelchair.
    Nguyen AV; Nguyen LB; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3638-41. PubMed ID: 24110518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collaborative path planning for a robotic wheelchair.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):315-24. PubMed ID: 19117192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project.
    Ceres R; Pons JL; Calderón L; Jiménez AR; Azevedo L
    IEEE Eng Med Biol Mag; 2005; 24(6):55-63. PubMed ID: 16382806
    [No Abstract]   [Full Text] [Related]  

  • 29. The future of intelligent assistive technologies for cognition: devices under development to support independent living and aging-with-choice.
    Boger J; Mihailidis A
    NeuroRehabilitation; 2011; 28(3):271-80. PubMed ID: 21558632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human--machine load sharing in rehabilitation robotics.
    Rahman T; McClenathan K
    Technol Health Care; 1999; 7(6):425-9. PubMed ID: 10665676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Self-Reliance Factors to Decide How to Share Control Between Human Powered Wheelchair Drivers and Ultrasonic Sensors.
    Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1221-1229. PubMed ID: 28113771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities.
    Maheu V; Frappier J; Archambault PS; Routhier F
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975397. PubMed ID: 22275600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing back displacement in the powered reclining wheelchair.
    Warren CG; Ko M; Smith C; Imre JV
    Arch Phys Med Rehabil; 1982 Sep; 63(9):447-9. PubMed ID: 7115048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance testing of collision-avoidance system for power wheelchairs.
    Lopresti EF; Sharma V; Simpson RC; Mostowy LC
    J Rehabil Res Dev; 2011; 48(5):529-44. PubMed ID: 21674403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New robotics: design principles for intelligent systems.
    Pfeifer R; Iida F; Bongard J
    Artif Life; 2005; 11(1-2):99-120. PubMed ID: 15811222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy.
    Gakopoulos S; Nica IG; Bekteshi S; Aerts JM; Monbaliu E; Hallez H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Satisfaction related to wheelchair use in older adults in both nursing homes and community dwelling.
    Karmarkar AM; Collins DM; Kelleher A; Cooper RA
    Disabil Rehabil Assist Technol; 2009 Sep; 4(5):337-43. PubMed ID: 19565374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voice control of a powered wheelchair.
    Simpson RC; Levine SP
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):122-5. PubMed ID: 12236450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of user preference over shared-control paradigms for a robotic wheelchair.
    Erdogan A; Argall BD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1106-1111. PubMed ID: 28813969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.