These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17437124)

  • 1. Progression detection in glaucoma can be made more efficient by using a variable interval between successive visual field tests.
    Jansonius NM
    Graefes Arch Clin Exp Ophthalmol; 2007 Nov; 245(11):1647-51. PubMed ID: 17437124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an optimal perimetric strategy for progression detection in glaucoma: from fixed-space to adaptive inter-test intervals.
    Jansonius NM
    Graefes Arch Clin Exp Ophthalmol; 2006 Mar; 244(3):390-3. PubMed ID: 16049704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayes' theorem applied to perimetric progression detection in glaucoma: from specificity to positive predictive value.
    Jansonius NM
    Graefes Arch Clin Exp Ophthalmol; 2005 May; 243(5):433-7. PubMed ID: 15578199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2862-9. PubMed ID: 24595388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selecting visual field tests and assessing visual field deterioration in glaucoma.
    Nouri-Mahdavi K
    Can J Ophthalmol; 2014 Dec; 49(6):497-505. PubMed ID: 25433738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining 10-2 visual field progression criteria: exploratory and confirmatory factor analysis using pointwise linear regression.
    de Moraes CG; Song C; Liebmann JM; Simonson JL; Furlanetto RL; Ritch R
    Ophthalmology; 2014 Mar; 121(3):741-9. PubMed ID: 24290806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of current technology used in evaluating visual function in glaucoma.
    Turalba AV; Grosskreutz C
    Semin Ophthalmol; 2010; 25(5-6):309-16. PubMed ID: 21091017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial.
    Öhnell H; Heijl A; Anderson H; Bengtsson B
    Acta Ophthalmol; 2017 May; 95(3):281-287. PubMed ID: 27778463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new index to monitor central visual field progression in glaucoma.
    de Moraes CG; Furlanetto RL; Ritch R; Liebmann JM
    Ophthalmology; 2014 Aug; 121(8):1531-8. PubMed ID: 24726202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted spatial sampling using GOANNA improves detection of visual field progression.
    Chong LX; Turpin A; McKendrick AM
    Ophthalmic Physiol Opt; 2015 Mar; 35(2):155-69. PubMed ID: 25683867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-doubling technology perimetry for detection of the development of visual field defects in glaucoma suspect eyes: a prospective study.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    JAMA Ophthalmol; 2014 Jan; 132(1):77-83. PubMed ID: 24177945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of progressive change in automated visual fields in glaucoma.
    Smith SD; Katz J; Quigley HA
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1419-28. PubMed ID: 8641844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting glaucomatous progression with infrequent visual field testing.
    Anderson AJ; Asokan R; Murata H; Asaoka R
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):174-182. PubMed ID: 29315705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls.
    Redmond T; O'Leary N; Hutchison DM; Nicolela MT; Artes PH; Chauhan BC
    JAMA Ophthalmol; 2013 Dec; 131(12):1565-72. PubMed ID: 24177807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2.
    Viswanathan AC; Fitzke FW; Hitchings RA
    Br J Ophthalmol; 1997 Dec; 81(12):1037-42. PubMed ID: 9497460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased detection rate of glaucomatous visual field damage with locally condensed grids: a comparison between fundus-oriented perimetry and conventional visual field examination.
    Schiefer U; Flad M; Stumpp F; Malsam A; Paetzold J; Vonthein R; Denk PO; Sample PA
    Arch Ophthalmol; 2003 Apr; 121(4):458-65. PubMed ID: 12695242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size threshold perimetry performs as well as conventional automated perimetry with stimulus sizes III, V, and VI for glaucomatous loss.
    Wall M; Doyle CK; Eden T; Zamba KD; Johnson CA
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3975-83. PubMed ID: 23633660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agreement among spectral-domain optical coherence tomography, standard automated perimetry, and stereophotography in the detection of glaucoma progression.
    Banegas SA; Antón A; Morilla-Grasa A; Bogado M; Ayala EM; Moreno-Montañes J
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1253-60. PubMed ID: 25626965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency of Visual Fields Needed to Detect Glaucoma Progression: A Computer Simulation Using Linear Mixed Effects Model.
    Sabouri S; Haem E; Masoumpour M; Vermeer KA; Lemij HG; Yousefi S; Pourahmad S
    J Glaucoma; 2023 May; 32(5):355-360. PubMed ID: 37054400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of visual field progression in glaucoma.
    Chen RI; Gedde SJ
    Curr Opin Ophthalmol; 2023 Mar; 34(2):103-108. PubMed ID: 36378107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.