BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17437312)

  • 1. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center.
    Blasco T; Boronat M; Concepción P; Corma A; Law D; Vidal-Moya JA
    Angew Chem Int Ed Engl; 2007; 46(21):3938-41. PubMed ID: 17437312
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO.
    Boronat M; Martínez-Sánchez C; Law D; Corma A
    J Am Chem Soc; 2008 Dec; 130(48):16316-23. PubMed ID: 18986144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.
    Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N
    ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate.
    Drake IJ; Zhang Y; Briggs D; Lim B; Chau T; Bell AT
    J Phys Chem B; 2006 Jun; 110(24):11654-64. PubMed ID: 16800460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.
    Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA
    J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient synthesis of dimethyl ether over HZSM-5 supported on medium-surface-area beta-SiC foam.
    Ivanova S; Vanhaecke E; Louis B; Libs S; Ledoux MJ; Rigolet S; Marichal C; Pham C; Luck F; Pham-Huu C
    ChemSusChem; 2008; 1(10):851-7. PubMed ID: 18846596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5.
    Hammond C; Forde MM; Ab Rahim MH; Thetford A; He Q; Jenkins RL; Dimitratos N; Lopez-Sanchez JA; Dummer NF; Murphy DM; Carley AF; Taylor SH; Willock DJ; Stangland EE; Kang J; Hagen H; Kiely CJ; Hutchings GJ
    Angew Chem Int Ed Engl; 2012 May; 51(21):5129-33. PubMed ID: 22488717
    [No Abstract]   [Full Text] [Related]  

  • 8. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites.
    Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y
    J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective homogeneous synthesis of dimethyl ether from methanol.
    Atkins MP; Earle MJ; Seddon KR; Swadźba-Kwaśny M; Vanoye L
    Chem Commun (Camb); 2010 Mar; 46(10):1745-7. PubMed ID: 20177636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.
    Engeldinger J; Richter M; Bentrup U
    Phys Chem Chem Phys; 2012 Feb; 14(7):2183-91. PubMed ID: 22090021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An easily accessible Re-based catalyst for the selective conversion of methanol: evidence for an unprecedented active site structure through combined operando techniques.
    Yoboué A; Susset A; Tougerti A; Gallego D; Ramani SV; Kalyanikar M; Dolzhnikov DS; Wubshet SG; Wang Y; Cristol S; Briois V; La Fontaine C; Gauvin RM; Paul JF; Berrier E
    Chem Commun (Camb); 2011 Apr; 47(14):4285-7. PubMed ID: 21365084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic conversion of methane to methanol using Cu-zeolites.
    Alayon EM; Nachtegaal M; Ranocchiari M; van Bokhoven JA
    Chimia (Aarau); 2012; 66(9):668-74. PubMed ID: 23211724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of solid catalysts in Friedel-Crafts acylation reactions.
    Sartori G; Maggi R
    Chem Rev; 2006 Mar; 106(3):1077-104. PubMed ID: 16522017
    [No Abstract]   [Full Text] [Related]  

  • 14. Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity.
    Fu Y; Shen J
    Chem Commun (Camb); 2007 Jun; (21):2172-4. PubMed ID: 17520126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts.
    Chung KH; Chang DR; Park BG
    Bioresour Technol; 2008 Nov; 99(16):7438-43. PubMed ID: 18387298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol and water adsorption in methanol-derived ZIF-71.
    Lively RP; Dose ME; Thompson JA; McCool BA; Chance RR; Koros WJ
    Chem Commun (Camb); 2011 Aug; 47(30):8667-9. PubMed ID: 21709911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared spectroscopic study of the adsorption of CO and nitriles on Na-mordenite: evidence of a new interaction.
    Salla I; Montanari T; Salagre P; Cesteros Y; Busca G
    J Phys Chem B; 2005 Jan; 109(2):915-22. PubMed ID: 16866459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy.
    He T; Ren P; Liu X; Xu S; Han X; Bao X
    Chem Commun (Camb); 2015 Dec; 51(94):16868-70. PubMed ID: 26451500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of isolated active centres in high-performance bioinspired selective oxidation catalysts.
    Dzierzak J; Bottinelli E; Berlier G; Gianotti E; Stulz E; Kowalczyk RM; Raja R
    Chem Commun (Camb); 2010 Apr; 46(16):2805-7. PubMed ID: 20369189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural.
    Bui L; Luo H; Gunther WR; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2013 Jul; 52(31):8022-5. PubMed ID: 23757377
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.