These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 17437313)

  • 1. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface.
    Wang S; Liu H; Liu D; Ma X; Fang X; Jiang L
    Angew Chem Int Ed Engl; 2007; 46(21):3915-7. PubMed ID: 17437313
    [No Abstract]   [Full Text] [Related]  

  • 2. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces.
    Borras A; Barranco A; González-Elipe AR
    Langmuir; 2008 Aug; 24(15):8021-6. PubMed ID: 18576610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures.
    Nishimoto S; Sekine H; Zhang X; Liu Z; Nakata K; Murakami T; Koide Y; Fujishima A
    Langmuir; 2009 Jul; 25(13):7226-8. PubMed ID: 19563218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous materials show superhydrophobic to superhydrophilic switching.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC; Roach P
    Chem Commun (Camb); 2005 Jul; (25):3135-7. PubMed ID: 15968349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterned superhydrophobic metallic surfaces.
    Kietzig AM; Hatzikiriakos SG; Englezos P
    Langmuir; 2009 Apr; 25(8):4821-7. PubMed ID: 19267439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process.
    Li S; Zhang S; Wang X
    Langmuir; 2008 May; 24(10):5585-90. PubMed ID: 18426232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces.
    Piret G; Coffinier Y; Roux C; Melnyk O; Boukherroub R
    Langmuir; 2008 Mar; 24(5):1670-2. PubMed ID: 18251564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces.
    Li XM; Reinhoudt D; Crego-Calama M
    Chem Soc Rev; 2007 Aug; 36(8):1350-68. PubMed ID: 17619692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular templates for nanoflake-metal surfaces.
    Shen Y; Wang J; Kuhlmann U; Hildebrandt P; Ariga K; Möhwald H; Kurth DG; Nakanishi T
    Chemistry; 2009; 15(12):2763-7. PubMed ID: 19156814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A topography/chemical composition gradient polystyrene surface: toward the investigation of the relationship between surface wettability and surface structure and chemical composition.
    Zhang J; Han Y
    Langmuir; 2008 Feb; 24(3):796-801. PubMed ID: 18154311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability control of a solid surface by utilizing photocatalysis.
    Watanabe T; Yoshida N
    Chem Rec; 2008; 8(5):279-90. PubMed ID: 18956472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New responsive property of poly(epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic.
    Hu S; Cao X; Song Y; Li C; Xie P; Jiang L
    Chem Commun (Camb); 2008 May; (17):2025-7. PubMed ID: 18536809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct UV-replica molding of biomimetic hierarchical structure for selective wetting.
    Choi SJ; Suh KY; Lee HH
    J Am Chem Soc; 2008 May; 130(20):6312-3. PubMed ID: 18439007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides.
    Pastine SJ; Okawa D; Kessler B; Rolandi M; Llorente M; Zettl A; Fréchet JM
    J Am Chem Soc; 2008 Apr; 130(13):4238-9. PubMed ID: 18331043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ hydrothermal synthesis of nanolamellate CaTiO3 with controllable structures and wettability.
    Wang D; Guo Z; Chen Y; Hao J; Liu W
    Inorg Chem; 2007 Sep; 46(19):7707-9. PubMed ID: 17696339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV and thermally stable superhydrophobic coatings from sol-gel processing.
    Xiu Y; Hess DW; Wong CP
    J Colloid Interface Sci; 2008 Oct; 326(2):465-70. PubMed ID: 18656893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method.
    Venkateswara Rao A; Latthe SS; Nadargi DY; Hirashima H; Ganesan V
    J Colloid Interface Sci; 2009 Apr; 332(2):484-90. PubMed ID: 19200554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.
    Choi CH; Kim CJ
    Langmuir; 2009 Jul; 25(13):7561-7. PubMed ID: 19518098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.