These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1743741)

  • 1. A water-cooled EM applicator radiating in a phantom equivalent tissue--experiments and numerical analysis.
    Gentili GB; Gori F; Lachi L; Leoncini M
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):924-8. PubMed ID: 1743741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain.
    Gentili GB; Leoncini M; Trembly BS; Schweizer SE
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):973-80. PubMed ID: 8582727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dipole-type intracavitary hyperthermic applicator with a metallic reflector: experiments and theoretical analysis.
    Biffi Gentili G; Gori F; Lachi L; Leoncini M
    Int J Hyperthermia; 1994; 10(2):175-87. PubMed ID: 8064179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal steady-state temperature distribution for a phased array hyperthermia system.
    Nikita KS; Maratos NG; Uzunoglu NK
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1299-306. PubMed ID: 8125505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic and thermal models of a water-cooled dipole radiating in a biological tissue.
    Gentili GB; Gori F; Leoncini M
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):98-103. PubMed ID: 2026439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quasi-static model for the ring capacitor applicator.
    Sowiński MJ; van Putten MH; van den Berg PM; van Rhoon GC
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):995-1003. PubMed ID: 2793200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of a new microwave applicator for hyperthermia treatment of uterocervical cancer].
    Wang W; Ding R; Wang H; Li Y; Lin S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):175-7. PubMed ID: 11951512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicator modeling for electromagnetic thermotherapy of cervix cancer.
    Rezaeealam B
    Electromagn Biol Med; 2015 Mar; 34(1):43-7. PubMed ID: 24460419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic head-and-neck hyperthermia applicator: experimental phantom verification and FDTD model.
    Paulides MM; Bakker JF; van Rhoon GC
    Int J Radiat Oncol Biol Phys; 2007 Jun; 68(2):612-20. PubMed ID: 17418965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized heating characteristics of hyperthermia using a reentrant cavity.
    Ishihara Y; Wadamori N
    J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High permittivity patch radiator for single and multi-element hyperthermia applicators.
    Andreuccetti D; Bini M; Ignesti A; Olmi R; Priori S; Vanni R
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):711-5. PubMed ID: 8244433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating.
    Franconi C; Raganella L; Tiberio CA
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man.
    Paulsen KD; Strohbehn JW; Lynch DR
    IEEE Trans Biomed Eng; 1988 Jan; 35(1):36-45. PubMed ID: 3338810
    [No Abstract]   [Full Text] [Related]  

  • 16. [Radiators for electromagnetic hyperthermia of malignant intracavitary neoplasms].
    Gel'vich EA; Mazokhin VN; Siniagovskiĭ VI
    Med Radiol (Mosk); 1987 Jan; 32(1):87-92. PubMed ID: 3807716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator.
    Johnson RH; Preece AW; Green JL
    Phys Med Biol; 1990 Jun; 35(6):761-79. PubMed ID: 2367546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and use of current sheet antennae for RF-hyperthermia of a phantom monitored by 3 tesla MR-thermography.
    Hoffmann W; Rhein KH; Wojcik F; Noeske R; Seifert F; Wlodarczyk W; Fähling H; Wust P; Rinneberg H
    Int J Hyperthermia; 2002; 18(5):454-71. PubMed ID: 12227931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of hyperthermia using an intracavitary multielement ultrasonic applicator.
    Diederich CJ; Hynynen K
    IEEE Trans Biomed Eng; 1989 Apr; 36(4):432-8. PubMed ID: 2714822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.