These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17438423)

  • 21. Effect of refractive correction on the accuracy of frequency-doubling technology Matrix.
    Contestabile MT; Perdicchi A; Amodeo S; Paffetti L; Iester M; Recupero SM
    J Glaucoma; 2013; 22(5):413-5. PubMed ID: 23632396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C; Bültmann S; Völcker HE; Rohrschneider K
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between Humphrey 30-2 SITA Standard Test, Matrix 30-2 threshold test, and Heidelberg retina tomograph in ocular hypertensive and glaucoma patients.
    Bozkurt B; Yilmaz PT; Irkec M
    J Glaucoma; 2008; 17(3):203-10. PubMed ID: 18414106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of instructions on conventional automated perimetry.
    Kutzko KE; Brito CF; Wall M
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):2006-13. PubMed ID: 10845628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of an effective visual field testing strategy for a normal pediatric population.
    Akar Y; Yilmaz A; Yucel I
    Ophthalmologica; 2008; 222(5):329-33. PubMed ID: 18617757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-dependent normative values for differential luminance sensitivity in automated static perimetry using the Octopus 101.
    Hermann A; Paetzold J; Vonthein R; Krapp E; Rauscher S; Schiefer U
    Acta Ophthalmol; 2008 Jun; 86(4):446-55. PubMed ID: 18070224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying adaptation and fatigue effects in frequency doubling perimetry.
    Anderson AJ; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):943-8. PubMed ID: 17251498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning effect of short-wavelength automated perimetry in patients with ocular hypertension.
    Rossetti L; Fogagnolo P; Miglior S; Centofanti M; Vetrugno M; Orzalesi N
    J Glaucoma; 2006 Oct; 15(5):399-404. PubMed ID: 16988602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning effect and measurement variability in frequency-doubling technology perimetry in chronic open-angle glaucoma.
    Matsuo H; Tomita G; Suzuki Y; Araie M
    J Glaucoma; 2002 Dec; 11(6):467-73. PubMed ID: 12483088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of test reliability on the screening performance of frequency-doubling perimetry.
    Heeg GP; Jansonius NM
    Am J Ophthalmol; 2006 Mar; 141(3):585-7. PubMed ID: 16490521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT.
    Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y
    J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency doubling technology perimetry in normal children.
    Quinn LM; Gardiner SK; Wheeler DT; Newkirk M; Johnson CA
    Am J Ophthalmol; 2006 Dec; 142(6):983-9. PubMed ID: 17046702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors.
    Danesh-Meyer HV; Papchenko T; Savino PJ; Law A; Evans J; Gamble GD
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1879-85. PubMed ID: 18263812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry.
    Horn FK; Brenning A; Jünemann AG; Lausen B
    J Glaucoma; 2007; 16(4):363-71. PubMed ID: 17570999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning effect, short-term fluctuation, and long-term fluctuation in frequency doubling technique.
    Iester M; Capris P; Pandolfo A; Zingirian M; Traverso CE
    Am J Ophthalmol; 2000 Aug; 130(2):160-4. PubMed ID: 11004289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The functional consequences of glaucoma for eye-hand coordination.
    Kotecha A; O'Leary N; Melmoth D; Grant S; Crabb DP
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):203-13. PubMed ID: 18806294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of catch trial methods used in standard automated perimetry in glaucoma patients.
    Wall M; Doyle CK; Brito CF; Woodward KR; Johnson CA
    J Glaucoma; 2008 Dec; 17(8):626-30. PubMed ID: 19092457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the Humphrey Field Analyser and Humphrey Matrix Perimeter for the evaluation of glaucoma patients.
    Chen YH; Wu JN; Chen JT; Lu DW
    Ophthalmologica; 2008; 222(6):400-7. PubMed ID: 18781091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of the learning effect on automated perimetry in a Turkish population.
    Aydin A; Kocak I; Aykan U; Can G; Sabahyildizi M; Ersanli D
    J Fr Ophtalmol; 2015 Sep; 38(7):628-32. PubMed ID: 26111771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma.
    Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA
    Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.