These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17438770)

  • 1. Volatilization of parathion and chlorothalonil from a potato crop simulated by the PEARL model.
    Leistra M; van den Berg F
    Environ Sci Technol; 2007 Apr; 41(7):2243-8. PubMed ID: 17438770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop.
    Leistra M; Smelt JH; Weststrate JH; van den Berg F; Aalderink R
    Environ Sci Technol; 2006 Jan; 40(1):96-102. PubMed ID: 16433338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatilisation and competing processes computed for a pesticide applied to plants in a wind tunnel system.
    Leistra M; Wolters A; van den Berg F
    Pest Manag Sci; 2008 Jun; 64(6):669-75. PubMed ID: 18213615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models.
    Houbraken M; van den Berg F; Butler Ellis CM; Dekeyser D; Nuyttens D; De Schampheleire M; Spanoghe P
    Pest Manag Sci; 2016 Jul; 72(7):1309-21. PubMed ID: 26374459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pesticide volatilization from soil: lysimeter measurements versus predictions of European registration models.
    Wolters A; Linnemann V; Herbst M; Klein M; Schäffer A; Vereecken H
    J Environ Qual; 2003; 32(4):1183-93. PubMed ID: 12931871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pesticide volatilization from plants: improvement of the PEC model PELMO based on a boundary-layer concept.
    Wolters A; Leistra M; Linnemann V; Klein M; Schäffer A; Vereecken H
    Environ Sci Technol; 2004 May; 38(10):2885-93. PubMed ID: 15212264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.
    Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E
    Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation drift of pesticides active ingredients.
    De Schampheleire M; Nuyttens D; De Keyser D; Spanoghe P
    Commun Agric Appl Biol Sci; 2008; 73(4):739-42. PubMed ID: 19226822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of chlorothalonil, methyl parathion and methamidophos from water by the Fenton reaction.
    Gutiérrez RF; Santiesteban A; Cruz-López L; Bello-Mendoza R
    Environ Technol; 2007 Mar; 28(3):267-72. PubMed ID: 17432379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model approach for estimating potato pesticide bioconcentration factor.
    Paraíba LC; Kataguiri K
    Chemosphere; 2008 Nov; 73(8):1247-52. PubMed ID: 18752828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological impact in ditch mesocosms of simulated spray drift from a crop protection program for potatoes.
    Arts GH; Buijse-Bogdan LL; Belgers JD; van Rhenen-Kersten CH; van Wijngaarden RP; Roessink I; Maund SJ; van den Brink PJ; Brockt TC
    Integr Environ Assess Manag; 2006 Apr; 2(2):105-25. PubMed ID: 16646380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambient air concentrations of pesticides used in potato cultivation in Prince Edward Island, Canada.
    White LM; Ernst WR; Julien G; Garron C; Leger M
    Pest Manag Sci; 2006 Feb; 62(2):126-36. PubMed ID: 16358323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous ozone solutions for pesticide removal from potatoes.
    Heleno FF; de Queiroz ME; Faroni LR; Neves AA; de Oliveira AF; Costa LP; Pimenta GG
    Food Sci Technol Int; 2016 Dec; 22(8):752-758. PubMed ID: 27188796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observed volatilization fluxes of S-metolachlor and benoxacor applied on soil with and without crop residues.
    Bedos C; Alletto L; Durand B; Fanucci O; Brut A; Bourdat-Deschamps M; Giuliano S; Loubet B; Ceschia E; Benoit P
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3985-3996. PubMed ID: 27915427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on downwind short-range transport of pesticides after application in agricultural crops.
    Siebers J; Binner R; Wittich KP
    Chemosphere; 2003 May; 51(5):397-407. PubMed ID: 12598005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of pesticides in potato crops.
    López-Pérez GC; Arias-Estévez M; López-Periago E; Soto-Gonzalez B; Cancho-Grande B; Simal-Gandara J
    J Agric Food Chem; 2006 Mar; 54(5):1797-803. PubMed ID: 16506836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreduction of chlorothalonil fungicide on plant leaf models.
    Monadjemi S; El Roz M; Richard C; Ter Halle A
    Environ Sci Technol; 2011 Nov; 45(22):9582-9. PubMed ID: 21950599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considering degradation kinetics of pesticides in plant uptake models: proof of concept for potato.
    Li Z; Fantke P
    Pest Manag Sci; 2023 Mar; 79(3):1154-1163. PubMed ID: 36371622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.