These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17438778)

  • 1. Wavelength dependence of the photochemical reduction of iron in arctic seawater.
    Laglera LM; van den Berg CM
    Environ Sci Technol; 2007 Apr; 41(7):2296-302. PubMed ID: 17438778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater.
    Zhang H; Lindberg SE
    Environ Sci Technol; 2001 Mar; 35(5):928-35. PubMed ID: 11351537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-mediated photochemical decomposition of methylmercury in an arctic Alaskan lake.
    Hammerschmidt CR; Fitzgerald WF
    Environ Sci Technol; 2010 Aug; 44(16):6138-43. PubMed ID: 20704210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater.
    Swanner ED; Maisch M; Wu W; Kappler A
    Sci Rep; 2018 Mar; 8(1):4238. PubMed ID: 29523861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.
    Lee YP; Fujii M; Kikuchi T; Terao K; Yoshimura C
    PLoS One; 2017; 12(4):e0176484. PubMed ID: 28453538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemistry of organic iron(III) complexing ligands in oceanic systems.
    Barbeau K
    Photochem Photobiol; 2006; 82(6):1505-16. PubMed ID: 16968114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemistry of iron in aquatic environments.
    Lueder U; Jørgensen BB; Kappler A; Schmidt C
    Environ Sci Process Impacts; 2020 Jan; 22(1):12-24. PubMed ID: 31904051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic complexation of Fe(II) and its impact on the redox cycling of iron in rain.
    Kieber RJ; Skrabal SA; Smith BJ; Willey JD
    Environ Sci Technol; 2005 Mar; 39(6):1576-83. PubMed ID: 15819212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.
    Fujii M; Rose AL; Waite TD; Omura T
    Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The photochemistry of manganese and the origin of Banded Iron Formations.
    Anbar AD; Holland HD
    Geochim Cosmochim Acta; 1992 Jul; 56(7):2595-603. PubMed ID: 11537803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical production of Fe(II) in rainwater.
    Kieber RJ; Hardison DR; Whitehead RF; Willey JD
    Environ Sci Technol; 2003 Oct; 37(20):4610-6. PubMed ID: 14594369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of Fe(II) in rainwater.
    Willey JD; Whitehead RF; Kieber RJ; Hardison DR
    Environ Sci Technol; 2005 Apr; 39(8):2579-85. PubMed ID: 15884352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters.
    Hug SJ; Canonica L; Wegelin M; Gechter D; Von Gunten U
    Environ Sci Technol; 2001 May; 35(10):2114-21. PubMed ID: 11393995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron.
    Gaberell M; Chin YP; Hug SJ; Sulzberger B
    Environ Sci Technol; 2003 Oct; 37(19):4403-9. PubMed ID: 14572092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical acetochlor degradation induced by hydroxyl radical in Fe-amended wetland waters: Impact of pH and dissolved organic matter.
    Yuan C; Chin YP; Weavers LK
    Water Res; 2018 Apr; 132():52-60. PubMed ID: 29306699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of iron species in the photo-transformation of phenol in artificial and natural seawater.
    Calza P; Massolino C; Pelizzetti E; Minero C
    Sci Total Environ; 2012 Jun; 426():281-8. PubMed ID: 22503675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of Fe(II) in natural waters at high nutrient concentrations.
    González AG; Santana-Casiano JM; Pérez N; González-Dávila M
    Environ Sci Technol; 2010 Nov; 44(21):8095-101. PubMed ID: 20886829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.
    Page SE; Logan JR; Cory RM; McNeill K
    Environ Sci Process Impacts; 2014 Apr; 16(4):807-22. PubMed ID: 24556650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter.
    Bligh MW; Waite TD
    Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitrate enrichment and diatoms on the bioavailability of Fe(III) oxyhydroxide colloids in seawater.
    Liu FJ; Huang BQ; Li SX; Zheng FY; Huang XG
    Chemosphere; 2016 Mar; 147():105-13. PubMed ID: 26766021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.