BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17438782)

  • 1. Adsorption of pathogenic prion protein to quartz sand.
    Ma X; Benson CH; McKenzie D; Aiken JM; Pedersen JA
    Environ Sci Technol; 2007 Apr; 41(7):2324-30. PubMed ID: 17438782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attachment of pathogenic prion protein to model oxide surfaces.
    Jacobson KH; Kuech TR; Pedersen JA
    Environ Sci Technol; 2013 Jul; 47(13):6925-34. PubMed ID: 23611152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of the pathogenic prion protein through landfill materials.
    Jacobson KH; Lee S; McKenzie D; Benson CH; Pedersen JA
    Environ Sci Technol; 2009 Mar; 43(6):2022-8. PubMed ID: 19368208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally-relevant forms of the prion protein.
    Saunders SE; Bartz JC; Telling GC; Bartelt-Hunt SL
    Environ Sci Technol; 2008 Sep; 42(17):6573-9. PubMed ID: 18800532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.
    Sotirelis NP; Chrysikopoulos CV
    Environ Sci Technol; 2015 Nov; 49(22):13413-21. PubMed ID: 26465676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prion encephalopathies of animals and humans.
    Prusiner SB
    Dev Biol Stand; 1993; 80():31-44. PubMed ID: 8270114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prion protein adsorption to soil in a competitive matrix is slow and reduced.
    Saunders SE; Bartz JC; Bartelt-Hunt SL
    Environ Sci Technol; 2009 Oct; 43(20):7728-33. PubMed ID: 19921886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.
    Kellershohn N; Laurent M
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):539-45. PubMed ID: 9729459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.
    Leske H; Hornemann S; Herrmann US; Zhu C; Dametto P; Li B; Laferriere F; Polymenidou M; Pelczar P; Reimann RR; Schwarz P; Rushing EJ; Wüthrich K; Aguzzi A
    PLoS One; 2017; 12(2):e0170503. PubMed ID: 28207746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BSE: can we predict the future?
    Plum J
    Bull Mem Acad R Med Belg; 1997; 152(6):264-73. PubMed ID: 9581370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoaffinity purification and neutralization of scrapie prions.
    Gabizon R; McKinley MP; Groth D; Westaway D; DeArmond SJ; Carlson GA; Prusiner SB
    Prog Clin Biol Res; 1989; 317():583-600. PubMed ID: 2574871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different electrically charged proteins result in diverse bacterial transport behaviors in porous media.
    Wu D; He L; Ge Z; Tong M; Kim H
    Water Res; 2018 Oct; 143():425-435. PubMed ID: 29986251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prions in the environment: occurrence, fate and mitigation.
    Saunders SE; Bartelt-Hunt SL; Bartz JC
    Prion; 2008; 2(4):162-9. PubMed ID: 19242120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation.
    Silva CJ; Dynin I; Erickson ML; Requena JR; Balachandran A; Hui C; Onisko BC; Carter JM
    Biochemistry; 2013 Mar; 52(12):2139-47. PubMed ID: 23458153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion biology relevant to bovine spongiform encephalopathy.
    Novakofski J; Brewer MS; Mateus-Pinilla N; Killefer J; McCusker RH
    J Anim Sci; 2005 Jun; 83(6):1455-76. PubMed ID: 15890824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH.
    Hornemann S; Glockshuber R
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6010-4. PubMed ID: 9600908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays.
    Revault M; Quiquampoix H; Baron MH; Noinville S
    Biochim Biophys Acta; 2005 Aug; 1724(3):367-74. PubMed ID: 15950385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.