These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17438811)

  • 1. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation.
    Lee J; Fortner JD; Hughes JB; Kim JH
    Environ Sci Technol; 2007 Apr; 41(7):2529-35. PubMed ID: 17438811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of encapsulating agents on dispersion status and photochemical reactivity of C60 in the aqueous phase.
    Lee J; Kim JH
    Environ Sci Technol; 2008 Mar; 42(5):1552-7. PubMed ID: 18441802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species.
    Lee J; Yamakoshi Y; Hughes JB; Kim JH
    Environ Sci Technol; 2008 May; 42(9):3459-64. PubMed ID: 18522134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of aggregated C60 in the aqueous phase by UV irradiation.
    Lee J; Cho M; Fortner JD; Hughes JB; Kim JH
    Environ Sci Technol; 2009 Jul; 43(13):4878-83. PubMed ID: 19673279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase.
    Li Y; Niu J; Shang E; Crittenden JC
    Environ Sci Technol; 2015 Jan; 49(2):965-73. PubMed ID: 25536151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.
    Chae SR; Watanabe Y; Wiesner MR
    Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
    Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR
    Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of light energy and reducing agents on C60-mediated photosensitizing reactions.
    Quinones M; Zhang Y; Riascos P; Hwang HM; Aker WG; He X; Gao R
    Photochem Photobiol; 2014; 90(2):374-9. PubMed ID: 24188530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C) and their cytotoxicity in human keratinocytes.
    Zhao B; Bilski PJ; He YY; Feng L; Chignell CF
    Photochem Photobiol; 2008; 84(5):1215-23. PubMed ID: 18399919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of C(60) from aqueous stable colloidal aggregates into surfactant micelles.
    Zhang B; Cho M; Hughes JB; Kim JH
    Environ Sci Technol; 2009 Dec; 43(24):9124-9. PubMed ID: 19928758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.
    Moor KJ; Snow SD; Kim JH
    Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fullerol-sensitized production of reactive oxygen species in aqueous solution.
    Pickering KD; Wiesner MR
    Environ Sci Technol; 2005 Mar; 39(5):1359-65. PubMed ID: 15787378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60).
    Markovic Z; Trajkovic V
    Biomaterials; 2008 Sep; 29(26):3561-73. PubMed ID: 18534675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemistry of aqueous C60 clusters: evidence of 1O2 formation and its role in mediating C60 phototransformation.
    Hou WC; Jafvert CT
    Environ Sci Technol; 2009 Jul; 43(14):5257-62. PubMed ID: 19708350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.
    Lee I; Mackeyev Y; Cho M; Li D; Kim JH; Wilson LJ; Alvarez PJ
    Environ Sci Technol; 2009 Sep; 43(17):6604-10. PubMed ID: 19764224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.
    Yamakoshi Y; Umezawa N; Ryu A; Arakane K; Miyata N; Goda Y; Masumizu T; Nagano T
    J Am Chem Soc; 2003 Oct; 125(42):12803-9. PubMed ID: 14558828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates.
    Chae SR; Hotze EM; Wiesner MR
    Environ Sci Technol; 2009 Aug; 43(16):6208-13. PubMed ID: 19746715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of C
    Yin L; Zhou H; Lian L; Yan S; Song W
    Environ Sci Technol; 2016 Nov; 50(21):11742-11751. PubMed ID: 27709901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity studies of fullerenes and derivatives.
    Kolosnjaj J; Szwarc H; Moussa F
    Adv Exp Med Biol; 2007; 620():168-80. PubMed ID: 18217343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.