BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17439151)

  • 1. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids.
    Alakomi HL; Puupponen-Pimiä R; Aura AM; Helander IM; Nohynek L; Oksman-Caldentey KM; Saarela M
    J Agric Food Chem; 2007 May; 55(10):3905-12. PubMed ID: 17439151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens.
    Nohynek LJ; Alakomi HL; Kähkönen MP; Heinonen M; Helander IM; Oksman-Caldentey KM; Puupponen-Pimiä RH
    Nutr Cancer; 2006; 54(1):18-32. PubMed ID: 16800770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan.
    Ellison ML; Champlin FR
    Vet Microbiol; 2007 Oct; 124(3-4):310-8. PubMed ID: 17560745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing antibiotic activity: a strategy to control Acinetobacter infections.
    Chusri S; Villanueva I; Voravuthikunchai SP; Davies J
    J Antimicrob Chemother; 2009 Dec; 64(6):1203-11. PubMed ID: 19861335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of EDTA on Salmonella enterica serovar Typhimurium involves a component not assignable to lipopolysaccharide release.
    Alakomi HL; Saarela M; Helander IM
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2015-2021. PubMed ID: 12904541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells.
    Monagas M; Khan N; Andrés-Lacueva C; Urpí-Sardá M; Vázquez-Agell M; Lamuela-Raventós RM; Estruch R
    Br J Nutr; 2009 Jul; 102(2):201-6. PubMed ID: 19586571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane.
    Townes CL; Michailidis G; Hall J
    Biochem Biophys Res Commun; 2009 Sep; 387(3):500-3. PubMed ID: 19615343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive berry compounds-novel tools against human pathogens.
    Puupponen-Pimiä R; Nohynek L; Alakomi HL; Oksman-Caldentey KM
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):8-18. PubMed ID: 15578177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan.
    Braoudaki M; Hilton AC
    Int J Antimicrob Agents; 2005 Jan; 25(1):31-7. PubMed ID: 15620823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry.
    Puupponen-Pimiä R; Nohynek L; Ammann S; Oksman-Caldentey KM; Buchert J
    J Agric Food Chem; 2008 Feb; 56(3):681-8. PubMed ID: 18211029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin.
    Helander IM; Mattila-Sandholm T
    Int J Food Microbiol; 2000 Sep; 60(2-3):153-61. PubMed ID: 11016605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts.
    Freer E; Moreno E; Moriyón I; Pizarro-Cerdá J; Weintraub A; Gorvel JP
    J Bacteriol; 1996 Oct; 178(20):5867-76. PubMed ID: 8830680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colonic metabolites of berry polyphenols: the missing link to biological activity?
    Williamson G; Clifford MN
    Br J Nutr; 2010 Oct; 104 Suppl 3():S48-66. PubMed ID: 20955650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria.
    Helander IM; Nurmiaho-Lassila EL; Ahvenainen R; Rhoades J; Roller S
    Int J Food Microbiol; 2001 Dec; 71(2-3):235-44. PubMed ID: 11789941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in antimicrobial susceptibility in a population of Salmonella enterica serovar Dublin isolated from cattle in Japan from 1976 to 2005.
    Akiba M; Nakaoka Y; Kida M; Ishioka Y; Sameshima T; Yoshii N; Nakazawa M; Uchida I; Terakado N
    J Antimicrob Chemother; 2007 Dec; 60(6):1235-42. PubMed ID: 17956907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae.
    Chatterjee A; Chaudhuri S; Saha G; Gupta S; Chowdhury R
    J Bacteriol; 2004 Oct; 186(20):6809-14. PubMed ID: 15466033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS).
    Aurell CA; Wistrom AO
    Biochem Biophys Res Commun; 1998 Dec; 253(1):119-23. PubMed ID: 9875230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration.
    Alakomi HL; Paananen A; Suihko ML; Helander IM; Saarela M
    Appl Environ Microbiol; 2006 Jul; 72(7):4695-703. PubMed ID: 16820461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach to control Salmonella enterica by modern biophotonic technology: photosensitization.
    Buchovec I; Vaitonis Z; Luksiene Z
    J Appl Microbiol; 2009 Mar; 106(3):748-54. PubMed ID: 19302098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorometric assessment of gram-negative bacterial permeabilization.
    Helander IM; Mattila-Sandholm T
    J Appl Microbiol; 2000 Feb; 88(2):213-9. PubMed ID: 10735988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.