These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

926 related articles for article (PubMed ID: 17439198)

  • 1. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme.
    Seifert G
    J Phys Chem A; 2007 Jul; 111(26):5609-13. PubMed ID: 17439198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional tight binding.
    Elstner M; Seifert G
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20120483. PubMed ID: 24516180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: success and failure.
    Mori-Sánchez P; Wu Q; Yang W
    J Chem Phys; 2005 Aug; 123(6):62204. PubMed ID: 16122290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An average-of-configuration method for using Kohn-Sham density functional theory in modeling ligand-field theory.
    Anthon C; Bendix J; Schäffer CE
    Inorg Chem; 2003 Jun; 42(13):4088-97. PubMed ID: 12817966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2629-37. PubMed ID: 15268406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating the convergence of the total energy evaluation in density functional theory calculations.
    Zhou B; Wang YA
    J Chem Phys; 2008 Feb; 128(8):084101. PubMed ID: 18315027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity.
    Cinal M
    J Chem Phys; 2010 Jan; 132(1):014101. PubMed ID: 20078143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments.
    Ziegler T; Seth M; Krykunov M; Autschbach J; Wang F
    J Chem Phys; 2009 Apr; 130(15):154102. PubMed ID: 19388731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-consistent, constrained linear-combination-of-atomic-potentials approach to quantum mechanics.
    Dunlap BI; Schweigert IV
    J Chem Phys; 2011 Jan; 134(4):044122. PubMed ID: 21280702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A revised electronic Hessian for approximate time-dependent density functional theory.
    Ziegler T; Seth M; Krykunov M; Autschbach J
    J Chem Phys; 2008 Nov; 129(18):184114. PubMed ID: 19045393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized exchange-correlation potential from second-order self-energy for accurate Kohn-Sham energy gap.
    Fabiano E; Della Sala F
    J Chem Phys; 2007 Jun; 126(21):214102. PubMed ID: 17567185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct energy functional minimization under orthogonality constraints.
    Weber V; VandeVondele J; Hutter J; Niklasson AM
    J Chem Phys; 2008 Feb; 128(8):084113. PubMed ID: 18315039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations.
    Misquitta AJ; Podeszwa R; Jeziorski B; Szalewicz K
    J Chem Phys; 2005 Dec; 123(21):214103. PubMed ID: 16356035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a density functional theory-based method for the calculation of the hyperfine A-tensor in periodic systems with the use of numerical and Slater type atomic orbitals: application to paramagnetic defects.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2008 May; 112(19):4521-6. PubMed ID: 18412322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the applicability of density functional theory. III. Do consistent Kohn-Sham density functional methods exist?
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Oct; 137(13):134102. PubMed ID: 23039580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds.
    Garza J; Ramírez JZ; Vargas R
    J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized effective potential method for individual low-lying excited states.
    Glushkov VN; Levy M
    J Chem Phys; 2007 May; 126(17):174106. PubMed ID: 17492856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.
    Grimme S; Antony J; Ehrlich S; Krieg H
    J Chem Phys; 2010 Apr; 132(15):154104. PubMed ID: 20423165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study.
    Sinnecker S; Neese F
    J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.