These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17439232)

  • 1. Structural motifs of syringyl peroxidases are conserved during angiosperm evolution.
    Gómez Ros LV; Aznar-Asensio GJ; Hernandez JA; Bernal MA; Núñez-Flores MJ; Cuello J; Ros Barceló A
    J Agric Food Chem; 2007 May; 55(10):4131-8. PubMed ID: 17439232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes.
    Gómez Ros LV; Gabaldón C; Pomar F; Merino F; Pedreño MA; Barceló AR
    New Phytol; 2007; 173(1):63-78. PubMed ID: 17176394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis.
    Uzal EN; Gómez Ros LV; Pomar F; Bernal MA; Paradela A; Albar JP; Ros Barceló A
    Physiol Plant; 2009 Feb; 135(2):196-213. PubMed ID: 19055540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Looking for syringyl peroxidases.
    Barceló AR; Ros LVG; Carrasco AE
    Trends Plant Sci; 2007 Nov; 12(11):486-491. PubMed ID: 17928259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula).
    Marjamaa K; Kukkola E; Lundell T; Karhunen P; Saranpää P; Fagerstedt KV
    Tree Physiol; 2006 May; 26(5):605-11. PubMed ID: 16452074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryological evidence for developmental lability during early angiosperm evolution.
    Friedman WE
    Nature; 2006 May; 441(7091):337-40. PubMed ID: 16710419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels.
    López-Serrano M; Fernández MD; Pomar F; Pedreño MA; Ros Barceló A
    J Exp Bot; 2004 Feb; 55(396):423-31. PubMed ID: 14739265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree.
    Saarela JM; Rai HS; Doyle JA; Endress PK; Mathews S; Marchant AD; Briggs BG; Graham SW
    Nature; 2007 Mar; 446(7133):312-5. PubMed ID: 17361182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls.
    Barceló AR; Pomar F
    Phytochemistry; 2001 Aug; 57(7):1105-13. PubMed ID: 11430983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units.
    Fernández-Pérez F; Pomar F; Pedreño MA; Novo-Uzal E
    Physiol Plant; 2015 Jul; 154(3):395-406. PubMed ID: 25410139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate and growth form: the consequences for genome size in plants.
    Ohri D
    Plant Biol (Stuttg); 2005 Sep; 7(5):449-58. PubMed ID: 16163609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases.
    Zámocký M; Dunand C
    FEBS Lett; 2006 Dec; 580(28-29):6655-64. PubMed ID: 17126331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and early evolution of angiosperms.
    Soltis DE; Bell CD; Kim S; Soltis PS
    Ann N Y Acad Sci; 2008; 1133():3-25. PubMed ID: 18559813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of lignin monomers and the evolution of lignification among lower plants.
    Espiñeira JM; Novo Uzal E; Gómez Ros LV; Carrión JS; Merino F; Ros Barceló A; Pomar F
    Plant Biol (Stuttg); 2011 Jan; 13(1):59-68. PubMed ID: 21143726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: kinetics of an endwise process.
    Demont-Caulet N; Lapierre C; Jouanin L; Baumberger S; Méchin V
    Phytochemistry; 2010 Oct; 71(14-15):1673-83. PubMed ID: 20615517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria.
    Bernroitner M; Zamocky M; Furtmüller PG; Peschek GA; Obinger C
    J Exp Bot; 2009; 60(2):423-40. PubMed ID: 19129167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of naturally acetylated lignin units.
    Del Río JC; Marques G; Rencoret J; Martínez AT; Gutiérrez A
    J Agric Food Chem; 2007 Jul; 55(14):5461-8. PubMed ID: 17552541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of xylem class III peroxidases in lignification.
    Marjamaa K; Kukkola EM; Fagerstedt KV
    J Exp Bot; 2009; 60(2):367-76. PubMed ID: 19264758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae).
    McInnis SM; Emery DC; Porter R; Desikan R; Hancock JT; Hiscock SJ
    J Exp Bot; 2006; 57(8):1835-46. PubMed ID: 16698818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of two novel peroxidases and their response to salt stress and salicylic acid in the living fossil Ginkgo biloba.
    Novo-Uzal E; Gutiérrez J; Martínez-Cortés T; Pomar F
    Ann Bot; 2014 Oct; 114(5):923-36. PubMed ID: 25139427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.