These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17439234)

  • 1. Quantitative studies on the formation of phenol/2-furfurylthiol conjugates in coffee beverages toward the understanding of the molecular mechanisms of coffee aroma staling.
    Müller C; Hofmann T
    J Agric Food Chem; 2007 May; 55(10):4095-102. PubMed ID: 17439234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and structure determination of covalent conjugates formed from the sulfury-roasty-smelling 2-furfurylthiol and di- or trihydroxybenzenes and their identification in coffee brew.
    Müller C; Hemmersbach S; Slot GV; Hofmann T
    J Agric Food Chem; 2006 Dec; 54(26):10076-85. PubMed ID: 17177544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical interactions between odor-active thiols and melanoidins involved in the aroma staling of coffee beverages.
    Hofmann T; Schieberle P
    J Agric Food Chem; 2002 Jan; 50(2):319-26. PubMed ID: 11782201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aroma binding and stability in brewed coffee: A case study of 2-furfurylthiol.
    Sun Z; Yang N; Liu C; Linforth RST; Zhang X; Fisk ID
    Food Chem; 2019 Oct; 295():449-455. PubMed ID: 31174781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Quantitation of Reaction Products from Chlorogenic Acid, Caffeic Acid, and Their Thermal Degradation Products with Odor-Active Thiols in Coffee Beverages.
    Gigl M; Frank O; Irmer L; Hofmann T
    J Agric Food Chem; 2022 May; 70(17):5427-5437. PubMed ID: 35467336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative precursor studies on di- and trihydroxybenzene formation during coffee roasting using "in bean" model experiments and stable isotope dilution analysis.
    Müller C; Lang R; Hofmann T
    J Agric Food Chem; 2006 Dec; 54(26):10086-91. PubMed ID: 17177545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of raw coffee for thiol binding site precursors using "in bean" model roasting experiments.
    Müller C; Hofmann T
    J Agric Food Chem; 2005 Apr; 53(7):2623-9. PubMed ID: 15796603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Furfuryl alcohol is a precursor for furfurylthiol in coffee.
    Cerny C; Schlichtherle-Cerny H; Gibe R; Yuan Y
    Food Chem; 2021 Feb; 337():128008. PubMed ID: 32920267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of coffee brew aroma through control of the aroma staling pathway of 2-furfurylthiol.
    Sun Z; Cui H; Yang N; Ayed C; Zhang X; Fisk ID
    Food Chem; 2020 Aug; 322():126754. PubMed ID: 32283367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Odor Correlations in Homologous Series of Mercapto Furans and Mercapto Thiophenes Synthesized by Changing the Structural Motifs of the Key Coffee Odorant Furan-2-ylmethanethiol.
    Schoenauer S; Schieberle P
    J Agric Food Chem; 2018 Apr; 66(16):4189-4199. PubMed ID: 29627982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a stable isotope dilution analysis with liquid chromatography-tandem mass spectrometry detection for the quantitative analysis of di- and trihydroxybenzenes in foods and model systems.
    Lang R; Mueller C; Hofmann T
    J Agric Food Chem; 2006 Aug; 54(16):5755-62. PubMed ID: 16881674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between volatile and nonvolatile coffee components. 2. Mechanistic study focused on volatile thiols.
    Charles-Bernard M; Roberts DD; Kraehenbuehl K
    J Agric Food Chem; 2005 Jun; 53(11):4426-33. PubMed ID: 15913305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the role of precursors in coffee flavor formation using in-bean experiments.
    Poisson L; Schmalzried F; Davidek T; Blank I; Kerler J
    J Agric Food Chem; 2009 Nov; 57(21):9923-31. PubMed ID: 19817414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of odor-active 3-mercapto-3-methylbutyl acetate in volatile fraction of roasted coffee brew isolated by steam distillation under reduced pressure.
    Kumazawa K; Masuda H
    J Agric Food Chem; 2003 May; 51(10):3079-82. PubMed ID: 12720395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR-Based Studies on Odorant-Melanoidin Interactions in Coffee Beverages.
    Gigl M; Hofmann T; Frank O
    J Agric Food Chem; 2021 Dec; 69(50):15334-15344. PubMed ID: 34874702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The elusiveness of coffee aroma: new insights from a non-empirical approach.
    Munro LJ; Curioni A; Andreoni W; Yeretzian C; Watzke H
    J Agric Food Chem; 2003 May; 51(10):3092-6. PubMed ID: 12720397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in volatile compounds and overall aroma profile during storage of coffee brews at 4 and 25 degrees C.
    Pérez-Martínez M; Sopelana P; de Peña MP; Cid C
    J Agric Food Chem; 2008 May; 56(9):3145-54. PubMed ID: 18422327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model studies on the influence of coffee melanoidins on flavor volatiles of coffee beverages.
    Hofmann T; Czerny M; Calligaris S; Schieberle P
    J Agric Food Chem; 2001 May; 49(5):2382-6. PubMed ID: 11368608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the change in the flavor of a coffee drink during heat processing.
    Kumazawa K; Masuda H
    J Agric Food Chem; 2003 Apr; 51(9):2674-8. PubMed ID: 12696956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel aroma-active thiols in pan-roasted white sesame seeds.
    Tamura H; Fujita A; Steinhaus M; Takahisa E; Watanabe H; Schieberle P
    J Agric Food Chem; 2010 Jun; 58(12):7368-75. PubMed ID: 20491509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.