These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

670 related articles for article (PubMed ID: 17439239)

  • 1. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin at aqueous/organic interface.
    Taluja A; Bae YH
    Mol Pharm; 2007; 4(4):561-70. PubMed ID: 17439239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin in aqueous solutions.
    Taluja A; Bae YH
    Pharm Res; 2007 Aug; 24(8):1517-26. PubMed ID: 17385016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition.
    Kwon YM; Kim SW
    Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a novel multifunctional excipient poly(ethylene glycol)-block-oligo(vinyl sulfadimethoxine) in controlled release of lysozyme from PLGA microspheres.
    Taluja A; Bae YH
    Int J Pharm; 2008 Jun; 358(1-2):50-9. PubMed ID: 18395374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.
    Kim HC; Lee H; Khetan J; Won YY
    Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres.
    Cleland JL; Jones AJ
    Pharm Res; 1996 Oct; 13(10):1464-75. PubMed ID: 8899836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent.
    Mok H; Park TG
    Eur J Pharm Biopharm; 2008 Sep; 70(1):137-44. PubMed ID: 18515053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine).
    Lee ES; Oh KT; Kim D; Youn YS; Bae YH
    J Control Release; 2007 Oct; 123(1):19-26. PubMed ID: 17826863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-Water Interfacial Properties of Chloroform-Spread versus Water-Spread Poly((d,l-lactic acid- co-glycolic acid)- block-ethylene glycol) (PLGA-PEG) Polymers.
    Kim HC; Arick DQ; Won YY
    Langmuir; 2018 Apr; 34(16):4874-4887. PubMed ID: 29602280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol).
    Bromberg L; Rashba-Step J; Scott T
    Biophys J; 2005 Nov; 89(5):3424-33. PubMed ID: 16254391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the covalent modification with poly(ethylene glycol) on alpha-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic) microspheres.
    Castellanos IJ; Al-Azzam W; Griebenow K
    J Pharm Sci; 2005 Feb; 94(2):327-40. PubMed ID: 15570602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening for stability and compatibility conditions of recombinant human epidermal growth factor for parenteral formulation: effect of pH, buffers, and excipients.
    Santana H; González Y; Campana PT; Noda J; Amarantes O; Itri R; Beldarraín A; Páez R
    Int J Pharm; 2013 Aug; 452(1-2):52-62. PubMed ID: 23624083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ study of insulin aggregation induced by water-organic solvent interface.
    Kwon YM; Baudys M; Knutson K; Kim SW
    Pharm Res; 2001 Dec; 18(12):1754-9. PubMed ID: 11785697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocomplexation-assisted solubilization of pDNA in organic solvents for improved microencapsulation.
    Wang Y; Zhou J; Tang Y; Wei Y; Gong H; Li X; Zhang J
    J Colloid Interface Sci; 2013 Mar; 394():573-81. PubMed ID: 23305883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency.
    Mok H; Park JW; Park TG
    Pharm Res; 2007 Dec; 24(12):2263-9. PubMed ID: 17929147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization.
    Lee ES; Shin HJ; Na K; Bae YH
    J Control Release; 2003 Jul; 90(3):363-74. PubMed ID: 12880703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone).
    Safaei Nikouei N; Lavasanifar A
    Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro.
    Liu R; Huang SS; Wan YH; Ma GH; Su ZG
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):30-8. PubMed ID: 16814994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled delivery of recombinant adeno-associated virus serotype 2 using pH-sensitive poly(ethylene glycol)-poly-L-histidine hydrogels.
    Zeng YF; Tseng SJ; Kempson IM; Peng SF; Wu WT; Liu JR
    Biomaterials; 2012 Dec; 33(36):9239-45. PubMed ID: 23026709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.