These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17439261)

  • 1. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.
    Hatton RA; Blanchard NP; Stolojan V; Miller AJ; Silva SR
    Langmuir; 2007 May; 23(11):6424-30. PubMed ID: 17439261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Surface and interface analysis for copper phthalocyanine (CuPc) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XPS)].
    Gao ZY; Zhang X; Zheng DS; He XY; Zhang FJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Apr; 24(4):502-6. PubMed ID: 15766169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incorporation of mono- and bi-functionalized multiwall carbon nanotubes in organic photovoltaic cells.
    Sadhu V; Nismy NA; Adikaari AA; Henley SJ; Shkunov M; Silva SR
    Nanotechnology; 2011 Jul; 22(26):265607. PubMed ID: 21576781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological control of CuPc and its application in organic solar cells.
    Hsiao YS; Whang WT; Suen SC; Shiu JY; Chen CP
    Nanotechnology; 2008 Oct; 19(41):415603. PubMed ID: 21832648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells.
    Zhao D; Tang W; Ke L; Tan ST; Sun XW
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):829-37. PubMed ID: 20356288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional simulations of CuPc-PCTDA solar cells: the importance of mobility and molecular pi stacking.
    Sylvester-Hvid KO
    J Phys Chem B; 2006 Feb; 110(6):2618-27. PubMed ID: 16471863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light harvesting with multiwall carbon nanotube/silicon heterojunctions.
    Castrucci P; Scilletta C; Del Gobbo S; Scarselli M; Camilli L; Simeoni M; Delley B; Continenza A; De Crescenzi M
    Nanotechnology; 2011 Mar; 22(11):115701. PubMed ID: 21297234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power spectral density analysis and photoconducting behavior in copper(II) phthalocyanine nanostructured thin films.
    Karan S; Mallik B
    Phys Chem Chem Phys; 2008 Dec; 10(45):6751-61. PubMed ID: 19015778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic consideration of the surface potential built across phthalocyanine thin films on a metal electrode.
    Manaka T; Li CQ; Cheng XM; Iwamoto M
    J Chem Phys; 2004 Apr; 120(16):7725-32. PubMed ID: 15267684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.
    Aga RS; Gunther D; Ueda A; Pan Z; Collins WE; Mu R; Singer KD
    Nanotechnology; 2009 Nov; 20(46):465204. PubMed ID: 19847023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices.
    Wu MC; Wu YJ; Yen WC; Lo HH; Lin CF; Su WF
    Nanoscale; 2010 Aug; 2(8):1448-54. PubMed ID: 20820733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured organic-inorganic photodiodes with high rectification ratio.
    Karan S; Mallik B
    Nanotechnology; 2008 Dec; 19(49):495202. PubMed ID: 21730664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode.
    Mei X; Cho SJ; Fan B; Ouyang J
    Nanotechnology; 2010 Oct; 21(39):395202. PubMed ID: 20820098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(3,4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity.
    Bhandari S; Deepa M; Srivastava AK; Joshi AG; Kant R
    J Phys Chem B; 2009 Jul; 113(28):9416-28. PubMed ID: 19545156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative differential resistance and photovoltaic phenomena observed in nanostructured organic heterojunction.
    Chowdhury A; Biswas B; Mallik B
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4134-40. PubMed ID: 23862461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic layer deposition on gram quantities of multi-walled carbon nanotubes.
    Cavanagh AS; Wilson CA; Weimer AW; George SM
    Nanotechnology; 2009 Jun; 20(25):255602. PubMed ID: 19491468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of interface properties in CuPc based hybrid inorganic-organic solar cells.
    Thalluri GK; Spoltore D; Piersimoni F; Clifford JN; Palomares E; Manca JV
    Dalton Trans; 2012 Oct; 41(37):11419-23. PubMed ID: 22890562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.