These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17440211)

  • 1. On mathematical modeling of circadian rhythms, performance, and alertness.
    Klerman EB; St Hilaire M
    J Biol Rhythms; 2007 Apr; 22(2):91-102. PubMed ID: 17440211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering physiologic mechanisms of circadian rhythms and sleep/wake regulation through mathematical modeling.
    Kronauer RE; Gunzelmann G; Van Dongen HP; Doyle FJ; Klerman EB
    J Biol Rhythms; 2007 Jun; 22(3):233-45. PubMed ID: 17517913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue and performance models: general background and commentary on the circadian alertness simulator for fatigue risk assessment in transportation.
    Dijk DJ; Larkin W
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A119-21. PubMed ID: 15018272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics.
    Postnova S; Lockley SW; Robinson PA
    J Biol Rhythms; 2018 Apr; 33(2):203-218. PubMed ID: 29671707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms, sleep deprivation, and human performance.
    Goel N; Basner M; Rao H; Dinges DF
    Prog Mol Biol Transl Sci; 2013; 119():155-90. PubMed ID: 23899598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions from the three-process model of alertness.
    Akerstedt T; Folkard S; Portin C
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A75-83. PubMed ID: 15018267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical research issues in development of biomathematical models of fatigue and performance.
    Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive mathematical models of subjective alertness and cognitive throughput in humans.
    Jewett ME; Kronauer RE
    J Biol Rhythms; 1999 Dec; 14(6):588-97. PubMed ID: 10643756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythms of performance: new trends.
    Carrier J; Monk TH
    Chronobiol Int; 2000 Nov; 17(6):719-32. PubMed ID: 11128289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing mathematical models of neurobehavioral performance for the "real world".
    Dean DA; Fletcher A; Hursh SR; Klerman EB
    J Biol Rhythms; 2007 Jun; 22(3):246-58. PubMed ID: 17517914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-process model of alertness and its extension to performance, sleep latency, and sleep length.
    Akerstedt T; Folkard S
    Chronobiol Int; 1997 Mar; 14(2):115-23. PubMed ID: 9095372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of subjective alertness and motivation on human performance independent of circadian and homeostatic regulation.
    Hull JT; Wright KP; Czeisler CA
    J Biol Rhythms; 2003 Aug; 18(4):329-38. PubMed ID: 12932085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of circadian rhythms.
    Asgari-Targhi A; Klerman EB
    Wiley Interdiscip Rev Syst Biol Med; 2019 Mar; 11(2):e1439. PubMed ID: 30328684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process.
    Achermann P; Borbély AA
    Biol Cybern; 1994; 71(2):115-21. PubMed ID: 8068773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting sleep latency from the three-process model of alertness regulation.
    Akerstedt T; Folkard S
    Psychophysiology; 1996 Jul; 33(4):385-9. PubMed ID: 8753938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of circadian system and vigilance during space missions.
    Achermann P; Borbély AA
    Adv Space Biol Med; 1996; 5():201-12. PubMed ID: 8814799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologically-based modeling of sleep-wake regulatory networks.
    Booth V; Diniz Behn CG
    Math Biosci; 2014 Apr; 250():54-68. PubMed ID: 24530893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic and circadian aspects of sleep regulation in young poor sleepers.
    Benoit O; Aguirre A
    Neurophysiol Clin; 1996; 26(1):40-50. PubMed ID: 8657097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.