BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17440233)

  • 1. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases.
    Walkowska A; Badzyńska B; Kompanowska-Jezierska E; Johns EJ; Sadowski J
    Acta Physiol Scand; 2005 Jan; 183(1):99-105. PubMed ID: 15654923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
    Badzyńska B; Sadowski J
    Kidney Int; 2006 May; 69(10):1774-9. PubMed ID: 16572111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A; Kompanowska-Jezierska E; Sadowski J
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal nitric oxide synthase, nNOS, regulates renal hemodynamics in the postnatal developing piglet.
    Rodebaugh J; Sekulic M; Davies W; Montgomery S; Khraibi A; Solhaug MJ; Ratliff BB
    Pediatr Res; 2012 Feb; 71(2):144-9. PubMed ID: 22258124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney.
    Palm F; Fasching A; Hansell P; Källskog O
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F416-20. PubMed ID: 19923416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide inhibition and the impact on renal nerve-mediated antinatriuresis and antidiuresis in the anaesthetized rat.
    Bagnall NM; Dent PC; Walkowska A; Sadowski J; Johns EJ
    J Physiol; 2005 Dec; 569(Pt 3):849-56. PubMed ID: 16239274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of nNOS in regulation of renal function in hypertensive Ren-2 transgenic rats.
    Cervenka L; Kramer HJ; Malý J; Vanecková I; Bäcker A; Bokemeyer D; Bader M; Ganten D; Mitchell KD
    Physiol Res; 2002; 51(6):571-80. PubMed ID: 12511180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice.
    Mattson DL; Meister CJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R991-7. PubMed ID: 15961532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exogenous angiotensin II on renal tissue nitric oxide and intrarenal circulation in anaesthetized rats.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    Acta Physiol Scand; 2004 Nov; 182(3):313-8. PubMed ID: 15491410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes.
    Komers R; Lindsley JN; Oyama TT; Allison KM; Anderson S
    Am J Physiol Renal Physiol; 2000 Sep; 279(3):F573-83. PubMed ID: 10966937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition.
    Millar CG; Thiemermann C
    Br J Pharmacol; 1997 Aug; 121(8):1824-30. PubMed ID: 9283724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.