These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 17440326)
1. Measurement and control of the air contamination generated in a medical cyclotron facility for PET radiopharmaceuticals. Calandrino R; del Vecchio A; Todde S; Fazio F Health Phys; 2007 May; 92(5 Suppl):S70-7. PubMed ID: 17440326 [TBL] [Abstract][Full Text] [Related]
2. Measurements and evaluation of the risks due to external radiation exposures and to intake of activated elements for operational staff engaged in the maintenance of medical cyclotrons. Calandrino R; del Vecchio A; Parisi R; Todde S; De Felice P; Savi A; Pepe A; Mrskova A Radiat Prot Dosimetry; 2010 Jun; 139(4):477-82. PubMed ID: 20028699 [TBL] [Abstract][Full Text] [Related]
3. Intake risk and dose evaluation methods for workers in radiochemistry labs of a medical cyclotron facility. Calandrino R; del Vecchio A; Savi A; Todde S; Belloli S Health Phys; 2009 Oct; 97(4):315-21. PubMed ID: 19741360 [TBL] [Abstract][Full Text] [Related]
4. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system. Stimson DH; Pringle AJ; Maillet D; King AR; Nevin ST; Venkatachalam TK; Reutens DC; Bhalla R J Radiol Prot; 2016 Sep; 36(3):504-517. PubMed ID: 27383139 [TBL] [Abstract][Full Text] [Related]
5. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities. Zanzonico P; Dauer L; St Germain J Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690 [TBL] [Abstract][Full Text] [Related]
6. The radioprotection management of a PET department with a cyclotron and radiopharmacy laboratory, in accordance with Italian legislation. Russo AA; Ferrari P; Casale M; Delia R Radiat Prot Dosimetry; 2011 Sep; 147(1-2):240-6. PubMed ID: 22039292 [TBL] [Abstract][Full Text] [Related]
7. Review on production of 89Zr in a medical cyclotron for PET radiopharmaceuticals. Kasbollah A; Eu P; Cowell S; Deb P J Nucl Med Technol; 2013 Mar; 41(1):35-41. PubMed ID: 23327781 [TBL] [Abstract][Full Text] [Related]
8. Non-standard radionuclide production for PET in Japan. Fujibayashi Y; Suzuki K; Fukumura T; Mori T; Kasamatsu S Q J Nucl Med Mol Imaging; 2008 Jun; 52(2):140-4. PubMed ID: 18043540 [TBL] [Abstract][Full Text] [Related]
9. [Use of a cyclotron in the production of positron emitting radionuclides]. Martí-Climent J; Peñuelas I; Calvo R; Giménez M; Gámez C; Richter J Rev Esp Med Nucl; 1999 Aug; 18(4):261-7. PubMed ID: 10481107 [TBL] [Abstract][Full Text] [Related]
10. Assessment of internal contamination hazard and fast monitoring for workers involved in maintenance operations on PET cyclotrons. Terranova N; Testoni R; Cicoria G; Mostacci D; Marengo M Radiat Prot Dosimetry; 2011 Mar; 144(1-4):468-72. PubMed ID: 21051437 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of pulmonary nodules and lung cancer with one-inch crystal gamma coincidence positron emission tomography/CT versus dedicated positron emission tomography/CT. Moodie K; Cherk MH; Lau E; Turlakow A; Skinner S; Hicks RJ; Kelly MJ; Kalff V J Med Imaging Radiat Oncol; 2009 Feb; 53(1):32-9. PubMed ID: 19453526 [TBL] [Abstract][Full Text] [Related]
12. Production and separation of ''non-standard'' PET nuclides at a large cyclotron facility: the experiences at the Paul Scherrer Institute in Switzerland. Hohn A; Zimmermann K; Schaub E; Hirzel W; Schubiger PA; Schibli R Q J Nucl Med Mol Imaging; 2008 Jun; 52(2):145-50. PubMed ID: 18174878 [TBL] [Abstract][Full Text] [Related]
13. Effective production of ⁶⁵Zn with a PET cyclotron. Lucconi G; Cicoria G; Pancaldi D; Malizia C; Marengo M Appl Radiat Isot; 2012 Aug; 70(8):1590-4. PubMed ID: 22732395 [TBL] [Abstract][Full Text] [Related]
14. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility. Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444 [TBL] [Abstract][Full Text] [Related]
15. Decommissioning procedures for an 11 MeV self-shielded medical cyclotron after 16 years of working time. Calandrino R; del Vecchio A; Savi A; Todde S; Griffoni V; Brambilla S; Parisi R; Simone G; Fazio F Health Phys; 2006 Jun; 90(6):588-96. PubMed ID: 16691108 [TBL] [Abstract][Full Text] [Related]
16. Pharmaceutical preparation of oxygen-15 labelled molecular oxygen and carbon monoxide gasses in a hospital setting. Luurtsema G; Boellaard R; Greuter HN; Rijbroek A; Takkenkamp K; de Geest FG; Buijs FL; Harry Hendrikse N; Franssen EJ; van Lingen A; Lammertsma AA J Clin Pharm Ther; 2010 Feb; 35(1):63-9. PubMed ID: 20175813 [TBL] [Abstract][Full Text] [Related]
17. Radionuclide production and yields at Washington University School of Medicine. Tang L Q J Nucl Med Mol Imaging; 2008 Jun; 52(2):121-33. PubMed ID: 18043542 [TBL] [Abstract][Full Text] [Related]
18. A real-time positron monitor for the estimation of stack effluent releases from PET medical cyclotron facilities. Mukherjee B Appl Radiat Isot; 2002 Dec; 57(6):899-905. PubMed ID: 12406635 [TBL] [Abstract][Full Text] [Related]
19. Experimental monitoring of ozone production in a PET cyclotron facility. Zanibellato L; Cicoria G; Pancaldi D; Boschi S; Mostacci D; Marengo M Appl Radiat Isot; 2010 Oct; 68(10):1933-6. PubMed ID: 20483623 [TBL] [Abstract][Full Text] [Related]
20. Indoor radon concentrations in Adana, Turkey. Degerlier M; Celebi N Radiat Prot Dosimetry; 2008; 131(2):259-64. PubMed ID: 18469346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]