These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 1744078)
1. Activation of the proteinase B precursor of the yeast Saccharomyces cerevisiae by autocatalysis and by an internal sequence. Nebes VL; Jones EW J Biol Chem; 1991 Dec; 266(34):22851-7. PubMed ID: 1744078 [TBL] [Abstract][Full Text] [Related]
2. Biogenesis of the yeast vacuole (lysosome). Mutation in the active site of the vacuolar serine proteinase yscB abolishes proteolytic maturation of its 73-kDa precursor to the 41.5-kDa pro-enzyme and a newly detected 41-kDa peptide. Hirsch HH; Schiffer HH; Müller H; Wolf DH Eur J Biochem; 1992 Feb; 203(3):641-53. PubMed ID: 1735447 [TBL] [Abstract][Full Text] [Related]
3. Biogenesis of the yeast vacuole (lysosome). The use of active-site mutants of proteinase yscA to determine the necessity of the enzyme for vacuolar proteinase maturation and proteinase yscB stability. Rupp S; Wolf DH Eur J Biochem; 1995 Jul; 231(1):115-25. PubMed ID: 7628461 [TBL] [Abstract][Full Text] [Related]
4. Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Moehle CM; Tizard R; Lemmon SK; Smart J; Jones EW Mol Cell Biol; 1987 Dec; 7(12):4390-9. PubMed ID: 3325823 [TBL] [Abstract][Full Text] [Related]
5. A mutant Kex2 enzyme with a C-terminal HDEL sequence releases correctly folded human insulin-like growth factor-1 from a precursor accumulated in the yeast endoplasmic reticulum. Chaudhuri B; Latham SE; Stephan C Eur J Biochem; 1992 Dec; 210(3):811-22. PubMed ID: 1483466 [TBL] [Abstract][Full Text] [Related]
6. Biogenesis of the yeast vacuole (lysosome). Proteinase yscB contributes molecularly and kinetically to vacuolar hydrolase-precursor maturation. Hirsch HH; Schiffer HH; Wolf DH Eur J Biochem; 1992 Aug; 207(3):867-76. PubMed ID: 1499562 [TBL] [Abstract][Full Text] [Related]
7. N-linked glycosylation of proteinase B precursors of the yeast Saccharomyces cerevisiae is not required for proper targeting or processing of the enzyme. Nebes VL; Jones EW Yeast; 1992 May; 8(5):353-9. PubMed ID: 1626428 [TBL] [Abstract][Full Text] [Related]
8. Vacuolar and extracellular maturation of Saccharomyces cerevisiae proteinase A. Wolff AM; Din N; Petersen JG Yeast; 1996 Jul; 12(9):823-32. PubMed ID: 8840499 [TBL] [Abstract][Full Text] [Related]
9. A C-terminal domain conserved in precursor processing proteases is required for intramolecular N-terminal maturation of pro-Kex2 protease. Gluschankof P; Fuller RS EMBO J; 1994 May; 13(10):2280-8. PubMed ID: 8194519 [TBL] [Abstract][Full Text] [Related]
10. Processing pathway for protease B of Saccharomyces cerevisiae. Moehle CM; Dixon CK; Jones EW J Cell Biol; 1989 Feb; 108(2):309-25. PubMed ID: 2645294 [TBL] [Abstract][Full Text] [Related]
11. The PBN1 gene of Saccharomyces cerevisiae: an essential gene that is required for the post-translational processing of the protease B precursor. Naik RR; Jones EW Genetics; 1998 Jul; 149(3):1277-92. PubMed ID: 9649520 [TBL] [Abstract][Full Text] [Related]
12. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. Espenshade PJ; Cheng D; Goldstein JL; Brown MS J Biol Chem; 1999 Aug; 274(32):22795-804. PubMed ID: 10428864 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of S. cerevisiae mutants defective in somatostatin expression: cloning and functional role of a yeast gene encoding an aspartyl protease in precursor processing at monobasic cleavage sites. Bourbonnais Y; Ash J; Daigle M; Thomas DY EMBO J; 1993 Jan; 12(1):285-94. PubMed ID: 8094050 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the proteinase B structural gene PRB1 in Saccharomyces cerevisiae. Naik RR; Nebes V; Jones EW J Bacteriol; 1997 Mar; 179(5):1469-74. PubMed ID: 9045801 [TBL] [Abstract][Full Text] [Related]
15. Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae. Hemmings BA; Zubenko GS; Hasilik A; Jones EW Proc Natl Acad Sci U S A; 1981 Jan; 78(1):435-9. PubMed ID: 7017716 [TBL] [Abstract][Full Text] [Related]
16. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Van de Ven WJ; Roebroek AJ; Van Duijnhoven HL Crit Rev Oncog; 1993; 4(2):115-36. PubMed ID: 8420571 [TBL] [Abstract][Full Text] [Related]
17. A 38 kDa precursor protein of aqualysin I (a thermophilic subtilisin-type protease) with a C-terminal extended sequence: its purification and in vitro processing. Kurosaka K; Ohta T; Matsuzawa H Mol Microbiol; 1996 Apr; 20(2):385-9. PubMed ID: 8733236 [TBL] [Abstract][Full Text] [Related]
18. Biogenesis of the yeast lysosome (vacuole): biosynthesis and maturation of proteinase yscB. Mechler B; Hirsch HH; Müller H; Wolf DH EMBO J; 1988 Jun; 7(6):1705-10. PubMed ID: 3049073 [TBL] [Abstract][Full Text] [Related]
19. Yeast aminopeptidase I is post-translationally sorted from the cytosol to the vacuole by a mechanism mediated by its bipartite N-terminal extension. Seguí-Real B; Martinez M; Sandoval IV EMBO J; 1995 Nov; 14(22):5476-84. PubMed ID: 8521804 [TBL] [Abstract][Full Text] [Related]
20. Phenotypic analysis of proteinase A mutants. Implications for autoactivation and the maturation pathway of the vacuolar hydrolases of Saccharomyces cerevisiae. Woolford CA; Noble JA; Garman JD; Tam MF; Innis MA; Jones EW J Biol Chem; 1993 Apr; 268(12):8990-8. PubMed ID: 8473342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]