These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 1744104)
1. Hormonal activation of gene transcription in ras-transformed NIH3T3 cells overexpressing RII alpha and RII beta subunits of the cAMP-dependent protein kinase. Otten AD; Parenteau LA; Døskeland S; McKnight GS J Biol Chem; 1991 Dec; 266(34):23074-82. PubMed ID: 1744104 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of the type II regulatory subunit of the cAMP-dependent protein kinase eliminates the type I holoenzyme in mouse cells. Otten AD; McKnight GS J Biol Chem; 1989 Dec; 264(34):20255-60. PubMed ID: 2584216 [TBL] [Abstract][Full Text] [Related]
3. 8-Chloro-cAMP inhibits transforming growth factor alpha transformation of mammary epithelial cells by restoration of the normal mRNA patterns for cAMP-dependent protein kinase regulatory subunit isoforms which show disruption upon transformation. Ciardiello F; Tortora G; Kim N; Clair T; Ally S; Salomon DS; Cho-Chung YS J Biol Chem; 1990 Jan; 265(2):1016-20. PubMed ID: 1688548 [TBL] [Abstract][Full Text] [Related]
4. 8-Cl-cAMP induces truncation and down-regulation of the RI alpha subunit and up-regulation of the RII beta subunit of cAMP-dependent protein kinase leading to type II holoenzyme-dependent growth inhibition and differentiation of HL-60 leukemia cells. Rohlff C; Clair T; Cho-Chung YS J Biol Chem; 1993 Mar; 268(8):5774-82. PubMed ID: 8449943 [TBL] [Abstract][Full Text] [Related]
5. Messenger ribonucleic acids for alpha- and beta-isoforms of cyclic adenosine 3',5'-monophosphate-dependent protein kinase subunits present in the anterior pituitary: regulation of RII beta and C alpha gene expression by the cyclic nucleotide and phorbol ester. Garrel G; Lerrant Y; Ribot G; Counis R Endocrinology; 1993 Sep; 133(3):1010-9. PubMed ID: 8396005 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of growth and modulation of gene expression in human lung carcinoma in athymic mice by site-selective 8-Cl-cyclic adenosine monophosphate. Ally S; Clair T; Katsaros D; Tortora G; Yokozaki H; Finch RA; Avery TL; Cho-Chung YS Cancer Res; 1989 Oct; 49(20):5650-5. PubMed ID: 2676146 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the expression of the regulatory subunit of cAMP-dependent protein kinase II beta in Friend erythroleukemic cells. Evidence for posttranscriptional control and a central role for the C subunit. Gross RE; Lu XY; Rubin CS J Biol Chem; 1990 May; 265(14):8152-8. PubMed ID: 1692323 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and cell-specific expression of newly discovered subunits of cAMP-dependent protein kinases. Implications for different cellular responses to cAMP. Oyen O; Sandberg M; Levy FO; Taskén K; Beebe S; Hansson V; Jahnsen T APMIS Suppl; 1988; 2():238-50. PubMed ID: 2846017 [TBL] [Abstract][Full Text] [Related]
9. Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RII beta regulatory subunit to lose its ability to revert transformed fibroblasts. Budillon A; Cereseto A; Kondrashin A; Nesterova M; Merlo G; Clair T; Cho-Chung YS Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10634-8. PubMed ID: 7479855 [TBL] [Abstract][Full Text] [Related]
10. Retroviral vector-mediated overexpression of the RII beta subunit of the cAMP-dependent protein kinase induces differentiation in human leukemia cells and reverts the transformed phenotype of mouse fibroblasts. Tortora G; Budillon A; Yokozaki H; Clair T; Pepe S; Merlo G; Rohlff C; Cho-Chung YS Cell Growth Differ; 1994 Jul; 5(7):753-9. PubMed ID: 7947390 [TBL] [Abstract][Full Text] [Related]
11. Modulation of regulatory and catalytic subunit levels of cAMP-dependent protein kinase A in anterior pituitary cells in response to direct activation of protein kinases A and C or after GnRH stimulation. Garrel G; Delahaye R; Hemmings BA; Counis R Neuroendocrinology; 1995 Nov; 62(5):514-22. PubMed ID: 8559283 [TBL] [Abstract][Full Text] [Related]
12. cAMP-dependent protein kinases in the rat testis: regulatory and catalytic subunit associations. Weiss J; DeManno DA; Cutler RE; Brooks EJ; Erlichman J; Sanwal BD; Hunzicker-Dunn M Biochim Biophys Acta; 1992 Aug; 1136(2):208-18. PubMed ID: 1504106 [TBL] [Abstract][Full Text] [Related]
13. Patterns of cyclic AMP-dependent protein kinase gene expression during ontogeny of the murine palate. Greene RM; Lloyd MR; Uberti M; Nugent P; Pisano MM J Cell Physiol; 1995 Jun; 163(3):431-40. PubMed ID: 7775586 [TBL] [Abstract][Full Text] [Related]
14. Expression of a kinase anchor protein 75 depletes type II cAMP-dependent protein kinases from the cytoplasm and sequesters the kinases in a particulate pool. Ndubuka C; Li Y; Rubin CS J Biol Chem; 1993 Apr; 268(11):7621-4. PubMed ID: 8463292 [TBL] [Abstract][Full Text] [Related]
15. Activated protein kinase A is required for differentiation-dependent transcription of the decidual prolactin gene in human endometrial stromal cells. Telgmann R; Maronde E; Taskén K; Gellersen B Endocrinology; 1997 Mar; 138(3):929-37. PubMed ID: 9048592 [TBL] [Abstract][Full Text] [Related]
16. 1,25-dihydroxyvitamin D3 alters the effect of cAMP in thyroid cells by increasing the regulatory subunit type II beta of the cAMP-dependent protein kinase. Berg JP; Ree AH; Sandvik JA; Taskén K; Landmark BF; Torjesen PA; Haug E J Biol Chem; 1994 Dec; 269(51):32233-8. PubMed ID: 7798223 [TBL] [Abstract][Full Text] [Related]
17. Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3',5'-cyclic adenosine monophosphate on cell replication in human T lymphocytes. Skålhegg BS; Landmark BF; Døskeland SO; Hansson V; Lea T; Jahnsen T J Biol Chem; 1992 Aug; 267(22):15707-14. PubMed ID: 1379235 [TBL] [Abstract][Full Text] [Related]
18. Gonadotropin-releasing hormone and pituitary adenylate cyclase-activating polypeptide affect levels of cyclic adenosine 3',5'-monophosphate-dependent protein kinase A (PKA) subunits in the clonal gonadotrope alphaT3-1 cells: evidence for cross-talk between PKA and protein kinase C pathways. Garrel G; McArdle CA; Hemmings BA; Counis R Endocrinology; 1997 Jun; 138(6):2259-66. PubMed ID: 9165009 [TBL] [Abstract][Full Text] [Related]
19. Adenosine 3',5'-monophosphate-dependent stabilization of messenger ribonucleic acids (mRNAs) for protein kinase-A (PKA) subunits in rat Sertoli cells: rapid degradation of mRNAs for PKA subunits is dependent on ongoing RNA and protein synthesis. Knutsen HK; Taskén KA; Eskild W; Jahnsen T; Hansson V Endocrinology; 1991 Nov; 129(5):2496-502. PubMed ID: 1657577 [TBL] [Abstract][Full Text] [Related]
20. Protein kinase C activation by 12-O-tetradecanoylphorbol 13-acetate modulates messenger ribonucleic acid levels for two of the regulatory subunits of 3',5'-cyclic adenosine monophosphate-dependent protein kinases (RII beta and RI alpha) via multiple and distinct mechanisms. Taskén KA; Knutsen HK; Eikvar L; Taskén K; Eskild W; Jahnsen T; Hansson V Endocrinology; 1992 Mar; 130(3):1271-80. PubMed ID: 1311233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]