These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 17441093)
1. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives. Ojida A; Miyahara Y; Wongkongkatep J; Tamaru S; Sada K; Hamachi I Chem Asian J; 2006 Oct; 1(4):555-63. PubMed ID: 17441093 [TBL] [Abstract][Full Text] [Related]
2. Rational design of FRET-based ratiometric chemosensors for in vitro and in cell fluorescence analyses of nucleoside polyphosphates. Kurishita Y; Kohira T; Ojida A; Hamachi I J Am Chem Soc; 2010 Sep; 132(38):13290-9. PubMed ID: 20812684 [TBL] [Abstract][Full Text] [Related]
3. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor. Ojida A; Takashima I; Kohira T; Nonaka H; Hamachi I J Am Chem Soc; 2008 Sep; 130(36):12095-101. PubMed ID: 18700758 [TBL] [Abstract][Full Text] [Related]
4. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. Ojida A; Mito-oka Y; Sada K; Hamachi I J Am Chem Soc; 2004 Mar; 126(8):2454-63. PubMed ID: 14982454 [TBL] [Abstract][Full Text] [Related]
5. Spiropyran-based fluorescent anion probe and its application for urinary pyrophosphate detection. Shao N; Wang H; Gao X; Yang R; Chan W Anal Chem; 2010 Jun; 82(11):4628-36. PubMed ID: 20459115 [TBL] [Abstract][Full Text] [Related]
6. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex. Butler SJ Chemistry; 2014 Nov; 20(48):15768-74. PubMed ID: 25303281 [TBL] [Abstract][Full Text] [Related]
7. A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates. Lee JH; Jeong AR; Jung JH; Park CM; Hong JI J Org Chem; 2011 Jan; 76(2):417-23. PubMed ID: 21174420 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent GTP-sensing in aqueous solution of physiological pH. Kwon JY; Singh NJ; Kim HN; Kim SK; Kim KS; Yoon J J Am Chem Soc; 2004 Jul; 126(29):8892-3. PubMed ID: 15264809 [TBL] [Abstract][Full Text] [Related]
9. Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO4- in 100% aqueous solution. Jang YJ; Jun EJ; Lee YJ; Kim YS; Kim JS; Yoon J J Org Chem; 2005 Nov; 70(23):9603-6. PubMed ID: 16268641 [TBL] [Abstract][Full Text] [Related]
10. A new approach to design ratiometric fluorescent probe for mercury(II) based on the Hg(2+)-promoted deprotection of thioacetals. Cheng X; Li Q; Qin J; Li Z ACS Appl Mater Interfaces; 2010 Apr; 2(4):1066-72. PubMed ID: 20423127 [TBL] [Abstract][Full Text] [Related]
11. Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. Singh NJ; Jun EJ; Chellappan K; Thangadurai D; Chandran RP; Hwang IC; Yoon J; Kim KS Org Lett; 2007 Feb; 9(3):485-8. PubMed ID: 17249793 [TBL] [Abstract][Full Text] [Related]
12. Efficient discovery of fluorescent chemosensors based on a biarylpyridine scaffold. Malashikhin SA; Baldridge KK; Finney NS Org Lett; 2010 Mar; 12(5):940-3. PubMed ID: 20131818 [TBL] [Abstract][Full Text] [Related]
13. 4-N-Methyl-N'-(2-dihydroxyboryl-benzyl)amino benzonitrile and its boronate analogue sensing saccharides and fluoride ion. Tan W; Zhang D; Zhu D Bioorg Med Chem Lett; 2007 May; 17(9):2629-33. PubMed ID: 17303415 [TBL] [Abstract][Full Text] [Related]
14. Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. Kurishita Y; Kohira T; Ojida A; Hamachi I J Am Chem Soc; 2012 Nov; 134(45):18779-89. PubMed ID: 23098271 [TBL] [Abstract][Full Text] [Related]
15. Mononuclear Zn(II)- and Cu(II)-complexes of a hydroxynaphthalene-derived dipicolylamine: fluorescent sensing behaviours toward pyrophosphate ions. Roy B; Rao AS; Ahn KH Org Biomol Chem; 2011 Oct; 9(22):7774-9. PubMed ID: 21952647 [TBL] [Abstract][Full Text] [Related]
16. An indirect approach for anion detection: the displacement strategy and its application. Lou X; Ou D; Li Q; Li Z Chem Commun (Camb); 2012 Sep; 48(68):8462-77. PubMed ID: 22781135 [TBL] [Abstract][Full Text] [Related]
17. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution. Zhang M; Ma WJ; He CT; Jiang L; Lu TB Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of a highly sensitive off-on fluorescent chemosensor for zinc ions utilizing internal charge transfer. Hanaoka K; Muramatsu Y; Urano Y; Terai T; Nagano T Chemistry; 2010 Jan; 16(2):568-72. PubMed ID: 19918808 [TBL] [Abstract][Full Text] [Related]
19. A colormetric and fluorescent chemosensor for adenosine-5'-triphosphate based on rhodamine derivative. Li CY; Zou CX; Li YF; Kong XF; Zhou Y; Wu YS; Zhu WG Anal Chim Acta; 2013 Sep; 795():69-74. PubMed ID: 23998539 [TBL] [Abstract][Full Text] [Related]
20. Ratiometric multimodal chemosensors based on cubic silsesquioxanes for monitoring solvent polarity. Tanaka K; Inafuku K; Chujo Y Bioorg Med Chem; 2008 Dec; 16(23):10029-33. PubMed ID: 18954994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]