These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17441250)

  • 1. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements.
    Liu T; Lizzi FL; Ketterling JA; Silverman RH; Kutcher GJ
    Med Phys; 2007 Mar; 34(3):1037-46. PubMed ID: 17441250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic tissue characterization using 2-D spectrum analysis and its application in ocular tumor diagnosis.
    Liu T; Lizzi FL; Silverman RH; Kutcher GJ
    Med Phys; 2004 May; 31(5):1032-9. PubMed ID: 15191289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic characterization of tissues via backscatter frequency dependence.
    Stetson P; Sommer G
    Ultrasound Med Biol; 1997; 23(7):989-96. PubMed ID: 9330443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study.
    Tasinkevych Y; Podhajecki J; FaliƄska K; Litniewski J
    Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5-50 MHz frequency range.
    McCormick MM; Madsen EL; Deaner ME; Varghese T
    J Acoust Soc Am; 2011 Aug; 130(2):737-43. PubMed ID: 21877789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normalization and backscatter spectral analysis of human carotid arterial data acquired using a clinical linear array ultrasound imaging system.
    Sareen M; Waters K; Nair A; Vince DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2968-71. PubMed ID: 19163329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibrating an ultrasonic computed tomography system using a time-of-flight based positioning algorithm.
    Filipik A; Peterlik I; Hemzal D; Jan J; Jirik R; Zapf M; Ruiter N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2146-9. PubMed ID: 18002413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential ultrasonic imaging for the characterization of lesions induced by high intensity focused ultrasound.
    Zhong H; Wan M; Jiang Y; Wang S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e285-8. PubMed ID: 16844167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens.
    Pereira WC; Bridal SL; Coron A; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):302-12. PubMed ID: 15128217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-imaging system comparison of backscatter coefficient estimates from a tissue-mimicking material.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Kumar V; Madsen EL; Ghoshal G; Pawlicki AD; Oelze ML; Lavarello RJ; Bigelow TA; Zagzebski JA; O'Brien WD; Hall TJ
    J Acoust Soc Am; 2012 Sep; 132(3):1319-24. PubMed ID: 22978860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-Point support mechanical steering system for high intensity focused ultrasound.
    Meaney PM; Raynolds T; Potwin L; Paulsen KD
    Phys Med Biol; 2007 Jun; 52(11):3045-56. PubMed ID: 17505088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On estimating the number density of random scatterers from backscattered acoustic signals.
    Sleefe GE; Lele PP
    Ultrasound Med Biol; 1988; 14(8):709-27. PubMed ID: 3062865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D reconstruction of ultrasound scanned data for tissue mimicking material sample.
    Zhu H; Yang P; Yao T
    Biomed Mater Eng; 2014; 24(6):2771-81. PubMed ID: 25226982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histology-based simulations for the ultrasonic detection of microscopic cancer in vivo.
    Doyle TE; Warnick KH; Carruth BL
    J Acoust Soc Am; 2007 Dec; 122(6):EL210-6. PubMed ID: 18247643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor.
    Oelze ML; Zachary JF; O'Brien WD
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1202-11. PubMed ID: 12243165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation.
    Insana MF; Hall TJ
    Ultrason Imaging; 1990 Oct; 12(4):245-67. PubMed ID: 1701584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic mechanism of attenuation of compressional ultrasonic waves in tissue-mimicking phantom materials.
    Wu EX; Goodsitt MM; Madsen EL
    Ultrason Imaging; 1992 Apr; 14(2):121-33. PubMed ID: 1604754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast--an experimental study.
    Guillermin R; Lasaygues P; Rabau G; Lefebvre JP
    J Acoust Soc Am; 2013 Aug; 134(2):1001-10. PubMed ID: 23927099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.
    Jiang J; Hall TJ
    Phys Med Biol; 2007 Jul; 52(13):3773-90. PubMed ID: 17664576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.