These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 17441721)
1. Design of a hybrid biosensor for enhanced phosphopeptide recognition based on a phosphoprotein binding domain coupled with a fluorescent chemosensor. Anai T; Nakata E; Koshi Y; Ojida A; Hamachi I J Am Chem Soc; 2007 May; 129(19):6232-9. PubMed ID: 17441721 [TBL] [Abstract][Full Text] [Related]
2. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. Ojida A; Mito-oka Y; Sada K; Hamachi I J Am Chem Soc; 2004 Mar; 126(8):2454-63. PubMed ID: 14982454 [TBL] [Abstract][Full Text] [Related]
3. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors. Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918 [TBL] [Abstract][Full Text] [Related]
4. Sequence selective dual-emission detection of (i, i + 1) bis-phosphorylated peptide using diazastilbene-type Zn(II)-Dpa chemosensor. Ishida Y; Inoue MA; Inoue T; Ojida A; Hamachi I Chem Commun (Camb); 2009 May; (20):2848-50. PubMed ID: 19436886 [TBL] [Abstract][Full Text] [Related]
5. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor. Ojida A; Takashima I; Kohira T; Nonaka H; Hamachi I J Am Chem Soc; 2008 Sep; 130(36):12095-101. PubMed ID: 18700758 [TBL] [Abstract][Full Text] [Related]
6. Coupling a natural receptor protein with an artificial receptor to afford a semisynthetic fluorescent biosensor. Nakata E; Nagase T; Shinkai S; Hamachi I J Am Chem Soc; 2004 Jan; 126(2):490-5. PubMed ID: 14719946 [TBL] [Abstract][Full Text] [Related]
7. Phospho-specific recognition by 14-3-3 proteins and antibodies monitored by a high throughput label-free optical biosensor. Wu M; Coblitz B; Shikano S; Long S; Spieker M; Frutos AG; Mukhopadhyay S; Li M FEBS Lett; 2006 Oct; 580(24):5681-9. PubMed ID: 17011553 [TBL] [Abstract][Full Text] [Related]
8. Real-time fluorescence monitoring of GSK3beta-catalyzed phosphoryation by use of a BODIPY-based Zn(II)-Dpa chemosensor. Sakamoto T; Inoue MA; Ojida A; Hamachi I Bioorg Med Chem Lett; 2009 Aug; 19(15):4175-7. PubMed ID: 19546004 [TBL] [Abstract][Full Text] [Related]
9. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation-driven protein-protein interactions: a protein kinase sensing system. Wang Q; Lawrence DS J Am Chem Soc; 2005 Jun; 127(21):7684-5. PubMed ID: 15913351 [TBL] [Abstract][Full Text] [Related]
11. A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte. Enander K; Choulier L; Olsson AL; Yushchenko DA; Kanmert D; Klymchenko AS; Demchenko AP; Mély Y; Altschuh D Bioconjug Chem; 2008 Sep; 19(9):1864-70. PubMed ID: 18693760 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. Altschuh D; Oncul S; Demchenko AP J Mol Recognit; 2006; 19(6):459-77. PubMed ID: 17089349 [TBL] [Abstract][Full Text] [Related]
13. Construction of artificial signal transducers on a lectin surface by post-photoaffinity-labeling modification for fluorescent saccharide biosensors. Nagase T; Nakata E; Shinkai S; Hamachi I Chemistry; 2003 Aug; 9(15):3660-9. PubMed ID: 12898693 [TBL] [Abstract][Full Text] [Related]
14. Fluorescent sensing of anions with acridinedione based neutral PET chemosensor. Thiagarajan V; Ramamurthy P Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):772-7. PubMed ID: 17081799 [TBL] [Abstract][Full Text] [Related]
15. Binuclear Ni(II)-DpaTyr complex as a high affinity probe for an oligo-aspartate Tag tethered to proteins. Ojida A; Fujishima SH; Honda K; Nonaka H; Uchinomiya SH; Hamachi I Chem Asian J; 2010 Apr; 5(4):877-86. PubMed ID: 20143369 [TBL] [Abstract][Full Text] [Related]
16. Improving the sensitivity and dynamic range of reagentless fluorescent immunosensors by knowledge-based design. Renard M; Bedouelle H Biochemistry; 2004 Dec; 43(49):15453-62. PubMed ID: 15581357 [TBL] [Abstract][Full Text] [Related]
17. Maltose-binding protein: a versatile platform for prototyping biosensing. Medintz IL; Deschamps JR Curr Opin Biotechnol; 2006 Feb; 17(1):17-27. PubMed ID: 16413768 [TBL] [Abstract][Full Text] [Related]
18. An ATP fluorescent chemosensor based on a Zn(II)-complexed dipicolylamine receptor coupled with a naphthalimide chromophore. Moro AJ; Cywinski PJ; Körsten S; Mohr GJ Chem Commun (Camb); 2010 Feb; 46(7):1085-7. PubMed ID: 20126721 [TBL] [Abstract][Full Text] [Related]
19. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes. Hagihara M; Fukuda M; Hasegawa T; Morii T J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390 [TBL] [Abstract][Full Text] [Related]
20. Recognition and fluorescence sensing of specific amino acid residue on protein surface using designed molecules. Ojida A; Miyahara Y; Kohira T; Hamachi I Biopolymers; 2004; 76(2):177-84. PubMed ID: 15054897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]