These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17441759)

  • 1. Critical factors for detection of biphasic changes in membrane properties at specific sterol mole fractions for maximal superlattice formation.
    Venegas B; Sugár I; Chong PL
    J Phys Chem B; 2007 May; 111(19):5180-92. PubMed ID: 17441759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence detection of signs of sterol superlattice formation in lipid membranes.
    Chong PL; Venegas B; Olsher M
    Methods Mol Biol; 2007; 400():159-70. PubMed ID: 17951733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of sterol superlattice in free radical-induced sterol oxidation in lipid membranes.
    Olsher M; Yoon SI; Chong PL
    Biochemistry; 2005 Feb; 44(6):2080-7. PubMed ID: 15697233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol and ergosterol superlattices in three-component liquid crystalline lipid bilayers as revealed by dehydroergosterol fluorescence.
    Liu F; Sugar IP; Chong PL
    Biophys J; 1997 May; 72(5):2243-54. PubMed ID: 9129827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes.
    Wang MM; Olsher M; Sugár IP; Chong PL
    Biochemistry; 2004 Mar; 43(8):2159-66. PubMed ID: 14979712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
    Bagatolli LA; Gratton E; Fidelio GD
    Biophys J; 1998 Jul; 75(1):331-41. PubMed ID: 9649390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes.
    Wang MM; Sugar IP; Chong PL
    Biochemistry; 1998 Aug; 37(34):11797-805. PubMed ID: 9718302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes.
    Liu F; Chong PL
    Biochemistry; 1999 Mar; 38(13):3867-73. PubMed ID: 10194297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence properties of Laurdan in cochleate phases.
    Ramani K; Balasubramanian SV
    Biochim Biophys Acta; 2003 Dec; 1618(1):67-78. PubMed ID: 14643935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterol superlattice affects antioxidant potency and can be used to assess adverse effects of antioxidants.
    Olsher M; Chong PL
    Anal Biochem; 2008 Nov; 382(1):1-8. PubMed ID: 18694720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane.
    Antollini SS; Barrantes FJ
    Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence evidence for cholesterol regular distribution in phosphatidylcholine and in sphingomyelin lipid bilayers.
    Chong PL; Liu F; Wang MM; Truong K; Sugar IP; Brown RE
    J Fluoresc; 1996 Dec; 6(4):221-30. PubMed ID: 24227345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers.
    Cheng KH; Virtanen J; Somerharju P
    Biophys J; 1999 Dec; 77(6):3108-19. PubMed ID: 10585932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane.
    Zhang YL; Frangos JA; Chachisvilis M
    Biochem Biophys Res Commun; 2006 Sep; 347(3):838-41. PubMed ID: 16857174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers.
    Cannon B; Lewis A; Metze J; Thiagarajan V; Vaughn MW; Somerharju P; Virtanen J; Huang J; Cheng KH
    J Phys Chem B; 2006 Mar; 110(12):6339-50. PubMed ID: 16553452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes.
    Roche Y; Klymchenko AS; Gerbeau-Pissot P; Gervais P; Mély Y; Simon-Plas F; Perrier-Cornet JM
    Biochim Biophys Acta; 2010 Aug; 1798(8):1601-7. PubMed ID: 20381451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.