These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17441761)

  • 1. Dynamics of water molecules in the active-site cavity of human cytochromes P450.
    Rydberg P; Rod TH; Olsen L; Ryde U
    J Phys Chem B; 2007 May; 111(19):5445-57. PubMed ID: 17441761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration energy landscape of the active site cavity in cytochrome P450cam.
    Helms V; Wade RC
    Proteins; 1998 Aug; 32(3):381-96. PubMed ID: 9715913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: the W191G mutant of cytochrome c peroxidase in water as revealed by molecular dynamics simulations.
    Baron R; McCammon JA
    Biochemistry; 2007 Sep; 46(37):10629-42. PubMed ID: 17718514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey of active site access channels in cytochromes P450.
    Wade RC; Winn PJ; Schlichting I; Sudarko
    J Inorg Biochem; 2004 Jul; 98(7):1175-82. PubMed ID: 15219983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dramatic differences in the motions of the mouth of open and closed cytochrome P450BM-3 by molecular dynamics simulations.
    Paulsen MD; Ornstein RL
    Proteins; 1995 Mar; 21(3):237-43. PubMed ID: 7784427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of binding sites of non-I-helix water molecules in mammalian cytochromes p450.
    Locuson CW; Tracy TS
    Drug Metab Dispos; 2006 Dec; 34(12):1954-7. PubMed ID: 16956955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and dynamic properties of cytochrome P450 BM-3 in pure water and in a dimethylsulfoxide/water mixture.
    Roccatano D; Wong TS; Schwaneberg U; Zacharias M
    Biopolymers; 2005 Aug; 78(5):259-67. PubMed ID: 15880388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.
    Clodfelter KH; Waxman DJ; Vajda S
    Biochemistry; 2006 Aug; 45(31):9393-407. PubMed ID: 16878974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward understanding the inactivation mechanism of monooxygenase P450 BM-3 by organic cosolvents: a molecular dynamics simulation study.
    Roccatano D; Wong TS; Schwaneberg U; Zacharias M
    Biopolymers; 2006 Dec; 83(5):467-76. PubMed ID: 16862534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and dynamic roles of permanent water molecules in ligand molecular recognition by chicken liver bile acid binding protein.
    Ricchiuto P; Rocco AG; Gianazza E; Corrada D; Beringhelli T; Eberini I
    J Mol Recognit; 2008; 21(5):348-54. PubMed ID: 18654997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of water molecules buried in cavities of apolipoprotein E studied by molecular dynamics simulations and continuum electrostatic calculations.
    Prévost M
    Biopolymers; 2004 Oct; 75(2):196-207. PubMed ID: 15356873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2.
    Zhao B; Lamb DC; Lei L; Kelly SL; Yuan H; Hachey DL; Waterman MR
    Biochemistry; 2007 Jul; 46(30):8725-33. PubMed ID: 17614370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking.
    de Graaf C; Pospisil P; Pos W; Folkers G; Vermeulen NP
    J Med Chem; 2005 Apr; 48(7):2308-18. PubMed ID: 15801824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic aqueduct orifices facilitate K+ channel gating.
    Zhong W; Guo W; Ma S
    FEBS Lett; 2008 Oct; 582(23-24):3320-4. PubMed ID: 18775711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking.
    Li W; Tang Y; Liu H; Cheng J; Zhu W; Jiang H
    Proteins; 2008 May; 71(2):938-49. PubMed ID: 18004755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase.
    Clarke TA; Kemp GL; Van Wonderen JH; Doyle RM; Cole JA; Tovell N; Cheesman MR; Butt JN; Richardson DJ; Hemmings AM
    Biochemistry; 2008 Mar; 47(12):3789-99. PubMed ID: 18311941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase.
    Harvey JN; Bathelt CM; Mulholland AJ
    J Comput Chem; 2006 Sep; 27(12):1352-62. PubMed ID: 16788912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The modeling of interactions of the CYP2E1 isoform of human cytochrome P450 with substrates].
    Potemkin VA; Grishina MA; Bartashevich EV; Zrakova TIu; Pogrebnoĭ AA
    Biofizika; 2005; 50(3):418-22. PubMed ID: 15977830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.