These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 17441785)

  • 1. 40 years with bacteriophage ø29.
    Salas M
    Annu Rev Microbiol; 2007; 61():1-22. PubMed ID: 17441785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. My life with bacteriophage phi29.
    Salas M
    J Biol Chem; 2012 Dec; 287(53):44568-79. PubMed ID: 23124207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A passion for research.
    Salas M
    Cell Mol Life Sci; 2009 Dec; 66(24):3827-30. PubMed ID: 19847377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage Ø29 protein p6: an architectural protein involved in genome organization, replication and control of transcription.
    González-Huici V; Alcorlo M; Salas M; Hermoso JM
    J Mol Recognit; 2004; 17(5):390-6. PubMed ID: 15362097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding.
    Saturno J; Lázaro JM; Esteban FJ; Blanco L; Salas M
    J Mol Biol; 1997 Jun; 269(3):313-25. PubMed ID: 9199402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence requirements for protein-primed initiation and elongation of phage O29 DNA replication.
    Gonzalez-Huici V; Salas M; Hermoso JM
    J Biol Chem; 2000 Dec; 275(51):40547-53. PubMed ID: 11006291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of O29 DNA polymerase by partial proteolysis: binding of terminal protein in the double-stranded DNA channel.
    Truniger V; Blanco L; Salas M
    J Mol Biol; 2000 Jan; 295(3):441-53. PubMed ID: 10623537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ramification amplification: a novel isothermal DNA amplification method.
    Zhang DY; Brandwein M; Hsuih T; Li HB
    Mol Diagn; 2001 Jun; 6(2):141-50. PubMed ID: 11468700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional comparative study of the complexes formed by viral ø29, Nf and GA-1 SSB proteins with DNA.
    Gascón I; Gutiérrez C; Salas M
    J Mol Biol; 2000 Mar; 296(4):989-99. PubMed ID: 10686098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing.
    Nelson JR; Cai YC; Giesler TL; Farchaus JW; Sundaram ST; Ortiz-Rivera M; Hosta LP; Hewitt PL; Mamone JA; Palaniappan C; Fuller CW
    Biotechniques; 2002 Jun; Suppl():44-7. PubMed ID: 12083397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery.
    Elías-Arnanz M; Salas M
    EMBO J; 1997 Sep; 16(18):5775-83. PubMed ID: 9312035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The push-pull mechanism of bacteriophage Ø29 DNA injection.
    González-Huici V; Salas M; Hermoso JM
    Mol Microbiol; 2004 Apr; 52(2):529-40. PubMed ID: 15066038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase.
    Mendez J; Blanco L; Salas M
    EMBO J; 1997 May; 16(9):2519-27. PubMed ID: 9171364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication.
    Illana B; Blanco L; Salas M
    J Mol Biol; 1996 Dec; 264(3):453-64. PubMed ID: 8969297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-genome amplification using Φ29 DNA polymerase.
    Burtt NP
    Cold Spring Harb Protoc; 2011 Jan; 2011(1):pdb.prot5552. PubMed ID: 21205852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity.
    Longás E; de Vega M; Lázaro JM; Salas M
    Nucleic Acids Res; 2006; 34(20):6051-63. PubMed ID: 17071961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage phi 29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3'-5' exonuclease active site.
    de Vega M; Lázaro JM; Salas M
    J Mol Biol; 2000 Nov; 304(1):1-9. PubMed ID: 11071805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usefulness of repeated GenomiPhi, a phi29 DNA polymerase-based rolling circle amplification kit, for generation of large amounts of plasmid DNA.
    Sato M; Ohtsuka M; Ohmi Y
    Biomol Eng; 2005 Oct; 22(4):129-32. PubMed ID: 16023891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation.
    Elías-Arnanz M; Salas M
    EMBO J; 1999 Oct; 18(20):5675-82. PubMed ID: 10523310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix-destabilizing activity of phi 29 single-stranded DNA binding protein: effect on the elongation rate during strand displacement DNA replication.
    Soengas MS; Gutiérrez C; Salas M
    J Mol Biol; 1995 Nov; 253(4):517-29. PubMed ID: 7473731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.