BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17442300)

  • 1. The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure.
    Zohn IE; Anderson KV; Niswander L
    Dev Biol; 2007 Jun; 306(1):208-21. PubMed ID: 17442300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme.
    Sarkar AA; Zohn IE
    J Cell Biol; 2012 Mar; 196(6):789-800. PubMed ID: 22431752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. twist is required in head mesenchyme for cranial neural tube morphogenesis.
    Chen ZF; Behringer RR
    Genes Dev; 1995 Mar; 9(6):686-99. PubMed ID: 7729687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects.
    Oxman E; Li H; Wang HY; Zohn IE
    Hum Genet; 2024 Mar; 143(3):263-277. PubMed ID: 38451291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of neural tube defect-associated gene Mthfd1l causes reduced cranial mesenchyme density.
    Shin M; Vaughn A; Momb J; Appling DR
    Birth Defects Res; 2019 Nov; 111(19):1520-1534. PubMed ID: 31518072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch.
    Sugrue KF; Sarkar AA; Leatherbury L; Zohn IE
    Dis Model Mech; 2019 Jan; 12(1):. PubMed ID: 30578278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hectd1 is essential for embryogenesis in mice.
    D'Alonzo D; Emch FH; Shen X; Bruder E; De Geyter C; Zhang H
    Gene Expr Patterns; 2019 Dec; 34():119064. PubMed ID: 31301385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exencephaly in a subset of animals heterozygous for AP-2alpha mutation.
    Kohlbecker A; Lee AE; Schorle H
    Teratology; 2002 May; 65(5):213-8. PubMed ID: 11967920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alx3-deficient mice exhibit folic acid-resistant craniofacial midline and neural tube closure defects.
    Lakhwani S; GarcĂ­a-Sanz P; Vallejo M
    Dev Biol; 2010 Aug; 344(2):869-80. PubMed ID: 20534379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the cranial mesenchyme contribute to neural fold elevation during neurulation?
    Zohn IE; Sarkar AA
    Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):841-8. PubMed ID: 22945385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos.
    Bu P; Evrard YA; Lozano G; Dent SY
    Mol Cell Biol; 2007 May; 27(9):3405-16. PubMed ID: 17325035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects.
    Oxman E; Li H; Wang HY; Zohn I
    Res Sq; 2024 Jan; ():. PubMed ID: 38260607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the embryonic phenotype of Bent tail, a mouse model for X-linked neural tube defects.
    Franke B; Klootwijk R; Hekking JW; de Boer RT; ten Donkelaar HJ; Mariman EC; van Straaten HW
    Anat Embryol (Berl); 2003 Oct; 207(3):255-62. PubMed ID: 14523648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the effect of retinoic acid on anterior neural tube closure in mice genetically liable to exencephaly.
    Tom C; Juriloff DM; Harris MJ
    Teratology; 1991 Jan; 43(1):27-40. PubMed ID: 2006470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of palladin results in neural tube closure defects in mice.
    Luo H; Liu X; Wang F; Huang Q; Shen S; Wang L; Xu G; Sun X; Kong H; Gu M; Chen S; Chen Z; Wang Z
    Mol Cell Neurosci; 2005 Aug; 29(4):507-15. PubMed ID: 15950489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental analysis of cephalic axial dysraphic disorders in arsenic-treated hamster embryos.
    Carpenter SJ
    Anat Embryol (Berl); 1987; 176(3):345-65. PubMed ID: 3631535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects.
    Lakkis MM; Golden JA; O'Shea KS; Epstein JA
    Dev Biol; 1999 Aug; 212(1):80-92. PubMed ID: 10419687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue, cellular and sub-cellular localization of the Vangl2 protein during embryonic development: effect of the Lp mutation.
    Torban E; Wang HJ; Patenaude AM; Riccomagno M; Daniels E; Epstein D; Gros P
    Gene Expr Patterns; 2007 Jan; 7(3):346-54. PubMed ID: 16962386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-teratogen interaction in insulin-induced mouse exencephaly.
    Cole WA; Trasler DG
    Teratology; 1980 Aug; 22(1):125-39. PubMed ID: 7003792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological study of the cranial neural folds of mice genetically liable to exencephaly.
    Gunn TM; Juriloff DM; Vogl W; Harris MJ; Miller JE
    Teratology; 1993 Nov; 48(5):459-71. PubMed ID: 8303615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.