These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 17442300)
1. The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure. Zohn IE; Anderson KV; Niswander L Dev Biol; 2007 Jun; 306(1):208-21. PubMed ID: 17442300 [TBL] [Abstract][Full Text] [Related]
2. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme. Sarkar AA; Zohn IE J Cell Biol; 2012 Mar; 196(6):789-800. PubMed ID: 22431752 [TBL] [Abstract][Full Text] [Related]
3. twist is required in head mesenchyme for cranial neural tube morphogenesis. Chen ZF; Behringer RR Genes Dev; 1995 Mar; 9(6):686-99. PubMed ID: 7729687 [TBL] [Abstract][Full Text] [Related]
4. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects. Oxman E; Li H; Wang HY; Zohn IE Hum Genet; 2024 Mar; 143(3):263-277. PubMed ID: 38451291 [TBL] [Abstract][Full Text] [Related]
6. The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch. Sugrue KF; Sarkar AA; Leatherbury L; Zohn IE Dis Model Mech; 2019 Jan; 12(1):. PubMed ID: 30578278 [TBL] [Abstract][Full Text] [Related]
7. Hectd1 is essential for embryogenesis in mice. D'Alonzo D; Emch FH; Shen X; Bruder E; De Geyter C; Zhang H Gene Expr Patterns; 2019 Dec; 34():119064. PubMed ID: 31301385 [TBL] [Abstract][Full Text] [Related]
8. Exencephaly in a subset of animals heterozygous for AP-2alpha mutation. Kohlbecker A; Lee AE; Schorle H Teratology; 2002 May; 65(5):213-8. PubMed ID: 11967920 [TBL] [Abstract][Full Text] [Related]
10. Does the cranial mesenchyme contribute to neural fold elevation during neurulation? Zohn IE; Sarkar AA Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):841-8. PubMed ID: 22945385 [TBL] [Abstract][Full Text] [Related]
11. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Bu P; Evrard YA; Lozano G; Dent SY Mol Cell Biol; 2007 May; 27(9):3405-16. PubMed ID: 17325035 [TBL] [Abstract][Full Text] [Related]
12. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects. Oxman E; Li H; Wang HY; Zohn I Res Sq; 2024 Jan; ():. PubMed ID: 38260607 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the embryonic phenotype of Bent tail, a mouse model for X-linked neural tube defects. Franke B; Klootwijk R; Hekking JW; de Boer RT; ten Donkelaar HJ; Mariman EC; van Straaten HW Anat Embryol (Berl); 2003 Oct; 207(3):255-62. PubMed ID: 14523648 [TBL] [Abstract][Full Text] [Related]
14. Studies of the effect of retinoic acid on anterior neural tube closure in mice genetically liable to exencephaly. Tom C; Juriloff DM; Harris MJ Teratology; 1991 Jan; 43(1):27-40. PubMed ID: 2006470 [TBL] [Abstract][Full Text] [Related]
15. Disruption of palladin results in neural tube closure defects in mice. Luo H; Liu X; Wang F; Huang Q; Shen S; Wang L; Xu G; Sun X; Kong H; Gu M; Chen S; Chen Z; Wang Z Mol Cell Neurosci; 2005 Aug; 29(4):507-15. PubMed ID: 15950489 [TBL] [Abstract][Full Text] [Related]
17. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Lakkis MM; Golden JA; O'Shea KS; Epstein JA Dev Biol; 1999 Aug; 212(1):80-92. PubMed ID: 10419687 [TBL] [Abstract][Full Text] [Related]
18. Tissue, cellular and sub-cellular localization of the Vangl2 protein during embryonic development: effect of the Lp mutation. Torban E; Wang HJ; Patenaude AM; Riccomagno M; Daniels E; Epstein D; Gros P Gene Expr Patterns; 2007 Jan; 7(3):346-54. PubMed ID: 16962386 [TBL] [Abstract][Full Text] [Related]