These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17442384)

  • 1. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer.
    Kostelansky MS; Schluter C; Tam YY; Lee S; Ghirlando R; Beach B; Conibear E; Hurley JH
    Cell; 2007 May; 129(3):485-98. PubMed ID: 17442384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes.
    Teo H; Gill DJ; Sun J; Perisic O; Veprintsev DB; Vallis Y; Emr SD; Williams RL
    Cell; 2006 Apr; 125(1):99-111. PubMed ID: 16615893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional organization of the ESCRT-I trafficking complex.
    Kostelansky MS; Sun J; Lee S; Kim J; Ghirlando R; Hierro A; Emr SD; Hurley JH
    Cell; 2006 Apr; 125(1):113-26. PubMed ID: 16615894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12.
    Curtiss M; Jones C; Babst M
    Mol Biol Cell; 2007 Feb; 18(2):636-45. PubMed ID: 17135292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for endosomal recruitment of ESCRT-I by ESCRT-0 in yeast.
    Ren X; Hurley JH
    EMBO J; 2011 Jun; 30(11):2130-9. PubMed ID: 21505419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking.
    Gill DJ; Teo H; Sun J; Perisic O; Veprintsev DB; Emr SD; Williams RL
    EMBO J; 2007 Jan; 26(2):600-12. PubMed ID: 17215868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis.
    Im YJ; Wollert T; Boura E; Hurley JH
    Dev Cell; 2009 Aug; 17(2):234-43. PubMed ID: 19686684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the ESCRT-II endosomal trafficking complex.
    Hierro A; Sun J; Rusnak AS; Kim J; Prag G; Emr SD; Hurley JH
    Nature; 2004 Sep; 431(7005):221-5. PubMed ID: 15329733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy.
    Boura E; Rózycki B; Herrick DZ; Chung HS; Vecer J; Eaton WA; Cafiso DS; Hummer G; Hurley JH
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9437-42. PubMed ID: 21596998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins.
    Teo H; Veprintsev DB; Williams RL
    J Biol Chem; 2004 Jul; 279(27):28689-96. PubMed ID: 15044434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment.
    Pineda-Molina E; Belrhali H; Piefer AJ; Akula I; Bates P; Weissenhorn W
    Traffic; 2006 Aug; 7(8):1007-16. PubMed ID: 16749904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation.
    Teis D; Saksena S; Emr SD
    Dev Cell; 2008 Oct; 15(4):578-89. PubMed ID: 18854142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes.
    Teo H; Perisic O; González B; Williams RL
    Dev Cell; 2004 Oct; 7(4):559-69. PubMed ID: 15469844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex.
    Im YJ; Hurley JH
    Dev Cell; 2008 Jun; 14(6):902-13. PubMed ID: 18539118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New component of ESCRT-I regulates endosomal sorting complex assembly.
    Chu T; Sun J; Saksena S; Emr SD
    J Cell Biol; 2006 Dec; 175(5):815-23. PubMed ID: 17145965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome.
    Bilodeau PS; Winistorfer SC; Kearney WR; Robertson AD; Piper RC
    J Cell Biol; 2003 Oct; 163(2):237-43. PubMed ID: 14581452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mvb12 is a novel member of ESCRT-I involved in cargo selection by the multivesicular body pathway.
    Oestreich AJ; Davies BA; Payne JA; Katzmann DJ
    Mol Biol Cell; 2007 Feb; 18(2):646-57. PubMed ID: 17151358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I.
    Katzmann DJ; Babst M; Emr SD
    Cell; 2001 Jul; 106(2):145-55. PubMed ID: 11511343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular basis for selective assembly of the UBAP1-containing endosome-specific ESCRT-I complex.
    Wunderley L; Brownhill K; Stefani F; Tabernero L; Woodman P
    J Cell Sci; 2014 Feb; 127(Pt 3):663-72. PubMed ID: 24284069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of an endosomal protein sorter.
    Slagsvold T; Stenmark H
    Dev Cell; 2004 Oct; 7(4):457-8. PubMed ID: 15469831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.