BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 17442470)

  • 21. Levels of dioxins in soil and corn tissues after 30 years of biosolids application.
    Hundal LS; Cox A; Granato TC; Abedin Z
    J Environ Qual; 2008; 37(4):1497-500. PubMed ID: 18574181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of atrazine in a crop-soil-groundwater system at Baiyangdian Lake area in China.
    Ye CM; Gong AJ; Wang XJ; Zheng HH; Lei ZF
    J Environ Sci (China); 2001 Apr; 13(2):148-52. PubMed ID: 11590732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration.
    Clara M; Strenn B; Kreuzinger N
    Water Res; 2004 Feb; 38(4):947-54. PubMed ID: 14769414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of leafy vegetables as bioindicators of gaseous mercury pollution in sewage-irrigated areas.
    Zheng SA; Wu Z; Chen C; Liang J; Huang H; Zheng X
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):413-421. PubMed ID: 29043585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination and assessment of mercury content in calcareous soils.
    Gil C; Ramos-Miras J; Roca-Pérez L; Boluda R
    Chemosphere; 2010 Jan; 78(4):409-15. PubMed ID: 20004461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of Dalbergia sissoo in desert regions of western India using municipal effluent and the subsequent changes in soil and plant chemistry.
    Singh G; Bhati M
    Bioresour Technol; 2005 Jun; 96(9):1019-28. PubMed ID: 15668198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.
    Barros KK; do Nascimento CW; Florencio L
    Water Sci Technol; 2012; 66(3):681-8. PubMed ID: 22744702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge.
    Pant P; Allen M; Tansel B
    Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence.
    Aouad G; Stille P; Crovisier JL; Geoffroy VA; Meyer JM; Lahd-Geagea M
    Sci Total Environ; 2006 Nov; 370(2-3):545-51. PubMed ID: 16973205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: Ca, Mg, S, Fe, Mn, Cu, Zn and B content of crops and soils.
    Warman PR; Termeer WC
    Bioresour Technol; 2005 Jun; 96(9):1029-38. PubMed ID: 15668199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: Results from a case study in the Inner Mongolia, China.
    Neidhardt H; Norra S; Tang X; Guo H; Stüben D
    Environ Pollut; 2012 Apr; 163():8-13. PubMed ID: 22325425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soil water repellency induced by long-term irrigation with treated sewage effluent.
    Wallach R; Ben-Arie O; Graber ER
    J Environ Qual; 2005; 34(5):1910-20. PubMed ID: 16151242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco-physiological parameters.
    Islam MR; Hu Y; Mao S; Mao J; Eneji AE; Xue X
    J Sci Food Agric; 2011 Aug; 91(11):1998-2005. PubMed ID: 21495038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content.
    Prabpai S; Charerntanyarak L; Siri B; Moore MR; Noller BN
    Waste Manag; 2009 Aug; 29(8):2316-20. PubMed ID: 19318241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of the lavender rhizosphere on the mercury uptake in field conditions.
    Sierra MJ; Rodríguez-Alonso J; Millán R
    Chemosphere; 2012 Nov; 89(11):1457-66. PubMed ID: 22818090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Soil hygiene after irrigation of agricultural fields with sewage water containing surface-active substances (review of the literature)].
    Mudryĭ IV
    Gig Sanit; 1990 Aug; (8):27-30. PubMed ID: 2283061
    [No Abstract]   [Full Text] [Related]  

  • 37. Bioavailability, transfer, toxicological effects, and contamination assessment of arsenic and mercury in soil-corn systems.
    Xu J; Zhang Q; Wang S; Nan Z; Long S; Wu Y; Dong S
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10063-10078. PubMed ID: 36066802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foliar exchange of mercury as a function of soil and air mercury concentrations.
    Ericksen JA; Gustin MS
    Sci Total Environ; 2004 May; 324(1-3):271-9. PubMed ID: 15081712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multimedia model of atrazine in plant-soil-groundwater system with a fugacity approach.
    Ye CM; Lei ZF; Wang XJ; Gong AJ; Zheng HH
    J Environ Sci (China); 2001 Oct; 13(4):466-71. PubMed ID: 11723934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.